Skip to main content

A simple approach for reconstruction of non-uniformly sampled pseudo-3D NMR data for accurate measurement of spin relaxation parameters

Abstract

We explain how to conduct a pseudo-3D relaxation series NUS measurement so that it can be reconstructed by existing 3D NUS reconstruction methods to give accurate relaxation values. We demonstrate using reconstruction algorithms IST and SMILE that this 3D approach allows lower sampling densities than for independent 2D reconstructions. This is in keeping with the common finding that higher dimensionality increases signal sparsity, enabling lower sampling density. The approach treats the relaxation series as ordinary 3D time-domain data whose imaginary part in the pseudo-dimension is zero, and applies any suitably linear 3D NUS reconstruction method accordingly. Best results on measured and simulated data were achieved using acquisitions with 9 to 12 planes and exponential spacing in the pseudo-dimension out to ~ 2 times the inverse decay time. Given these criteria, in typical cases where 2D reconstructions require 50% sampling, the new 3D approach generates spectra reliably at sampling densities of 25%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Example processing and analysis scripts and data will be available via the NMRPipe web site: https://www.ibbr.umd.edu/nmrpipe.

Software availability

The work makes use of the following software, which is all also available on the NMRbox cloud computing platform: NMRbox: https://www.nmrbox.org, NMRPipe: https://www.ibbr.umd.edu/nmrpipe/install.html, SMILE: https://spin.niddk.nih.gov/bax/software/smile, hmsIST: http://gwagner.med.harvard.edu/intranet/hmsIST (download by request).

Abbreviations

1D:

One-dimensional

2D:

Two-dimensional

3D:

Three-dimensional

DFT:

Discrete Fourier transform

FID:

Free induction decay

IST:

Iterative soft thresholding reconstruction

nD:

Multidimensional

NMR:

Nuclear magnetic resonance spectroscopy

NUS:

Non-uniformly sampled

RF:

Radio frequency

SMILE:

Sparse multidimensional iterative line shape enhanced reconstruction

References

  • Amaral M, Kokh DB, Bomke J, Wegener A, Buchstaller HP, Eggenweiler HM, Matias P, Sirrenberg C, Wade RC, Frech M (2017) Protein conformational flexibility modulates kinetics and thermodynamics of drug binding. Nat Commun 8(1):2276

    ADS  Article  Google Scholar 

  • Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling, an alternative method for sampling in two-dimensional Nmr experiments. J Magn Reson 73(1):69–77

    ADS  Google Scholar 

  • Baselice F, Ferraioli G, Grassia A, Pascazio V (2014) Optimal configuration for relaxation times estimation in complex spin echo imaging. Sensors (basel) 14(2):2182–2198

    ADS  Article  Google Scholar 

  • Bostock M, Nietlispach D (2017) Compressed sensing: reconstruction of non-uniformly sampled multidimensional NMR data. Concepts Magn Reson Part A 46a(2):e21438

    Article  Google Scholar 

  • Bostock MJ, Holland DJ, Nietlispach D (2012) Compressed sensing reconstruction of undersampled 3D NOESY spectra: application to large membrane proteins. J Biomol NMR 54(1):15–32

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  Google Scholar 

  • East KW, Newton JC, Morzan UN, Narkhede YB, Acharya A, Skeens E, Jogl G, Batista VS, Palermo G, Lisi GP (2020) Allosteric motions of the CRISPR-Cas9 HNH nuclease probed by NMR and molecular dynamics. J Am Chem Soc 142(3):1348–1358

    Article  Google Scholar 

  • Goddard TD, Kneller DG (2008) SPARKY 3. University of California, San Francisco

    Google Scholar 

  • Hansen DF (2019) Using deep neural networks to reconstruct non-uniformly sampled NMR spectra. J Biomol NMR 73(10–11):577–585

    Article  Google Scholar 

  • Hoch JC, Maciejewski MW, Filipovic B (2008) Randomization improves sparse sampling in multidimensional NMR. J Magn Reson 193(2):317–320

    ADS  Article  Google Scholar 

  • Hyberts SG, Arthanari H, Robson SA, Wagner G (2014) Perspectives in magnetic resonance: NMR in the post-FFT era. J Magn Reson 241:60–73

    ADS  Article  Google Scholar 

  • Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson gap scheduling. J Biomol NMR 52(4):315–327

    Article  Google Scholar 

  • Hyberts SG, Takeuchi K, Wagner G (2010) Poisson-gap sampling and forward maximum entropy reconstruction for enhancing the resolution and sensitivity of protein NMR data. J Am Chem Soc 132(7):2145–2147

    Article  Google Scholar 

  • Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed Engl 50(24):5556–5559

    Article  Google Scholar 

  • Kleckner IR, Foster MP (2011) An introduction to NMR-based approaches for measuring protein dynamics. Biochim Biophys Acta 1814(8):942–968

    Article  Google Scholar 

  • Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31(8):1325–1327

    Article  Google Scholar 

  • Linnet TE, Teilum K (2016) Non-uniform sampling of NMR relaxation data. J Biomol NMR 64(2):165–173

    Article  Google Scholar 

  • Lisi GP, Loria JP (2016) Using NMR spectroscopy to elucidate the role of molecular motions in enzyme function. Prog Nucl Magn Reson Spectrosc 92–93:1–17

    Article  Google Scholar 

  • Loria JP, Rance M, Palmer AG (1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121:2331

    Article  Google Scholar 

  • Maciejewski MW, Schuyler AD, Gryk MR, Moraru PR II, Romero EL, Ulrich HR, Eghbalnia M, Livny FD, Hoch JC (2017) NMRbox: a resource for biomolecular NMR computation. Biophys J 112(8):1529–1534

    Article  Google Scholar 

  • Maria-Solano MA, Serrano-Hervas E, Romero-Rivera A, Iglesias-Fernandez J, Osuna S (2018) Role of conformational dynamics in the evolution of novel enzyme function. Chem Commun 54(50):6622–6634

    Article  Google Scholar 

  • Mobli M, Hoch JC (2014) Nonuniform sampling and non-Fourier signal processing methods in multidimensional NMR. Prog Nucl Magn Reson Spectrosc 83:21–41

    Article  Google Scholar 

  • Monajemi H, Donoho DL (2019) Sparsity/undersampling tradeoffs in anisotropic undersampling, with applications in MR imaging/spectroscopy. Inf Inference A J IMA 8:531–576

    MathSciNet  Article  Google Scholar 

  • Nichols PJ, Born A, Henen MA, Strotz D, Jones DN, Delaglio F, Vogeli B (2020) Reducing the measurement time of exact NOEs by non-uniform sampling. J Biomol NMR 74(12):717–739

    Article  Google Scholar 

  • Orekhov VY, Jaravine VA (2011) Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Reson Spectrosc 59(3):271–292

    Article  Google Scholar 

  • Palmer AG 3rd (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104(8):3623–3640

    Article  Google Scholar 

  • Qu X, Mayzel M, Cai JF, Chen Z, Orekhov V (2015) Accelerated NMR spectroscopy with low-rank reconstruction. Angew Chem Int Ed Engl 54(3):852–854

    Article  Google Scholar 

  • Robson S, Arthanari H, Hyberts SG, Wagner G (2019) Nonuniform sampling for NMR spectroscopy. Methods Enzymol 614:263–291

    Article  Google Scholar 

  • Schmieder P, Stern AS, Wagner G, Hoch JC (1994) Improved resolution in triple-resonance spectra by nonlinear sampling in the constant-time domain. J Biomol NMR 4(4):483–490

    Article  Google Scholar 

  • Schmieder P, Stern AS, Wagner G, Hoch JC (1997) Quantification of maximum-entropy spectrum reconstructions. J Magn Reson 125(2):332–339

    ADS  Article  Google Scholar 

  • Schuyler AD, Maciejewski MW, Stern AS, Hoch JC (2015) Nonuniform sampling of hypercomplex multidimensional NMR experiments: dimensionality, quadrature phase and randomization. J Magn Reson 254:121–130

    ADS  Article  Google Scholar 

  • Stern AS, Donoho DL, Hoch JC (2007) NMR data processing using iterative thresholding and minimum l(1)-norm reconstruction. J Magn Reson 188(2):295–300

    ADS  Article  Google Scholar 

  • Urbanczyk M, Nowakowski M, Kozminski W, Kazimierczuk K (2017) Joint non-uniform sampling of all incremented time delays for quicker acquisition in protein relaxation studies. J Biomol NMR 68(2):155–161

    Article  Google Scholar 

  • Worley B, Powers R (2015) Deterministic multidimensional nonuniform gap sampling. J Magn Reson 261:19–26

    ADS  Article  Google Scholar 

  • Ying J, Delaglio F, Torchia DA, Bax A (2017) Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J Biomol NMR 68(2):101–118

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by start-up funds from Brown University and funds from the COBRE Center for Computational Biology of Human Disease (NIH P20-GM109035).

Disclaimer

Certain commercial equipment, instruments, and materials are identified in this presentation in order to specify the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the material or equipment identified is necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George P. Lisi.

Ethics declarations

Conflict of interest

Authors have no conflicting or competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1112 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

East, K.W., Delaglio, F. & Lisi, G.P. A simple approach for reconstruction of non-uniformly sampled pseudo-3D NMR data for accurate measurement of spin relaxation parameters. J Biomol NMR 75, 213–219 (2021). https://doi.org/10.1007/s10858-021-00369-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-021-00369-7

Keywords

  • Non-uniform sampling
  • Spin relaxation
  • Spectral reconstruction