Skip to main content
Log in

Spectral editing of alanine, serine, and threonine in uniformly labeled proteins based on frequency-selective homonuclear recoupling in solid-state NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Spectral editing is crucial to simplify the crowded solid-state NMR spectra of proteins. New techniques are introduced to edit 13C-13C correlations of uniformly labeled proteins under moderate magic-angle spinning (MAS), based on our recent frequency-selective homonuclear recoupling sequences [Zhang et al., J. Phys. Chem. Lett. 2020, 11, 8077–8083]. The signals of alanine, serine, or threonine residues are selected out by selective 13Cα-13Cβ double-quantum filtering (DQF). The 13Cα-13Cβ correlations of alanine residues are selectively established with efficiency up to ~ 1.8 times that by dipolar-assisted rotational resonance (DARR). The techniques are shown in 2D/3D NCCX experiments and applied to the uniformly 13C, 15N labeled Aquaporin Z (AqpZ) membrane protein, demonstrating their potential to simplify spectral analyses in biological solid-state NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: A general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330

    Article  ADS  Google Scholar 

  • Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    Article  ADS  Google Scholar 

  • Castellani F, van Rossum BJ, Diehl A, Rehbein K, Oschkinat H (2003) Determination of solid-state NMR structures of proteins by means of three-dimensional N-15-C-13-C-13 dipolar correlation spectroscopy and chemical shift analysis. Biochemistry 42:11476–11483

    Article  Google Scholar 

  • Chevelkov V, Giller K, Becker S, Lange A (2013a) Efficient CO-CA transfer in highly deuterated proteins by band-selective homonuclear cross-polarization. J Magn Reson 230:205–211

    Article  ADS  Google Scholar 

  • Chevelkov V, Shi C, Fasshuber HK, Becker S, Lange A (2013b) Efficient band-selective homonuclear CO-CA cross-polarization in protonated proteins. J Biomol NMR 56:303–311

    Article  Google Scholar 

  • De Paepe G, Lewandowski JR, Griffin RG (2008) Spin dynamics in the modulation frame: application to homonuclear recoupling in magic angle spinning solid-state NMR. J Chem Phys 128:124503

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe - a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Duong NT, Raran-Kurussi S, Nishiyama Y, Agarwal V (2018) Quantitative H-1-H-1 distances in protonated solids by frequency-selective recoupling at fast magic angle spinning NMR. J Phys Chem Lett 9:5948–5954

    Article  Google Scholar 

  • Fasshuber HK, Demers JP, Chevelkov V, Giller K, Becker S, Lange A (2015) Specific C-13 labeling of leucine, valine and isoleucine methyl groups for unambiguous detection of long-range restraints in protein solid-state NMR studies. J Magn Reson 252:10–19

    Article  ADS  Google Scholar 

  • Feng X et al (1997) Direct determination of a molecular torsional angle in the membrane protein rhodopsin by solid-state NMR. J Am Chem Soc 119:6853–6857

    Article  Google Scholar 

  • Franks WT, Kloepper KD, Wylie BJ, Rienstra CM (2007) Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins. J Biomol NMR 39:107–131

    Article  Google Scholar 

  • Franks WT et al (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta 1 immunoglobulin binding domain of protein G (GB1): N-15 and C-13 chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305

    Article  Google Scholar 

  • Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    Article  ADS  Google Scholar 

  • Goobes G, Boender GJ, Vega S (2000) Spinning-frequency-dependent narrowband RF-driven dipolar recoupling. J Magn Reson 146:204–219

    Article  ADS  Google Scholar 

  • Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated N-15-, C-13-, H-2-labeled proteins. J Biomol NMR 13:369–374

    Article  Google Scholar 

  • Gullion T, Schaefer J (1989) Rotational-echo double-resonance NMR. J Magn Reson 81:196–200

    ADS  Google Scholar 

  • Hing AW, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magn Reson 96:205–209

    ADS  Google Scholar 

  • Hohwy M, Jakobsen HJ, Eden M, Levitt MH, Nielsen NC (1998) Broadband dipolar recoupling in the nuclear magnetic resonance of rotating solids: a compensated C7 pulse sequence. J Chem Phys 108:2686–2694

    Article  ADS  Google Scholar 

  • Hohwy M, Rienstra CM, Griffin RG (2002) Band-selective homonuclear dipolar recoupling in rotating solids. J Chem Phys 117:4973–4987

    Article  ADS  Google Scholar 

  • Hohwy M, Rienstra CM, Jaroniec CP, Griffin RG (1999) Fivefold symmetric homonuclear dipolar recoupling in rotating solids: Application to double quantum spectroscopy. J Chem Phys 110:7983–7992

    Article  ADS  Google Scholar 

  • Hu KN, Tycko R (2009) Zero-quantum frequency-selective recoupling of homonuclear dipole-dipole interactions in solid state nuclear magnetic resonance. J Chem Phys 131:045101

    Article  ADS  Google Scholar 

  • Jehle S, Hiller M, Rehbein K, Diehl A, Oschkinat H, van Rossum BJ (2006a) Spectral editing: selection of methyl groups in multidimensional solid-state magic-angle spinning NMR. J Biomol NMR 36:169–177

    Article  Google Scholar 

  • Jehle S, Rehbein K, Diehl A, van Rossum BJ (2006b) Amino-acid selective experiments on uniformly C-13 and N-15 labeled proteins by MAS NMR: Filtering of lysines and arginines. J Magn Reson 183:324–328

    Article  ADS  Google Scholar 

  • Kobayashi T, Wang ZR, Pruski M (2019) Homonuclear dipolar recoupling of arbitrary pairs in multi-spin systems under magic angle spinning: a double-frequency-selective ZQ-SEASHORE experiment. Solid State Nucl Magn Reson 101:76–81

    Article  Google Scholar 

  • Li JP, Her AS, Traaseth NJ (2020) Site-specific resolution of anionic residues in proteins using solid-state NMR spectroscopy. J Biomol NMR 74:355–363

    Article  Google Scholar 

  • Mao JD, Schmidt-Rohr K (2005) Methylene spectral editing in solid-state C-13 NMR by three-spin coherence selection. J Magn Reson 176:1–6

    Article  ADS  Google Scholar 

  • Nielsen AB, Jain SK, Nielsen NC (2011) Low-power homonuclear dipolar recoupling using supercycled symmetry-based and exponentially-modulated pulse sequences. Chem Phys Lett 503:310–315

    Article  ADS  Google Scholar 

  • Nielsen NC, Bildsoe H, Jakobsen HJ, Levitt MH (1994) Double-quantum homonuclear rotary resonance: efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance. J Chem Phys 101:1805–1812

    Article  ADS  Google Scholar 

  • Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain C-13 and N-15 signal assignments of the alpha-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 tesla. ChemBioChem 2:272–281

    Article  Google Scholar 

  • Qiang W, Tycko R (2012) Zero-quantum stochastic dipolar recoupling in solid state nuclear magnetic resonance. J Chem Phys 137:104201

    Article  ADS  Google Scholar 

  • Raleigh DP, Levitt MH, Griffin RG (1988) Rotational resonance in solid-state NMR. Chem Phys Lett 146:71–76

    Article  ADS  Google Scholar 

  • Schmidt-Rohr K, Fritzsching KJ, Liao SY, Hong M (2012) Spectral editing of two-dimensional magic-angle-spinning solid-state NMR spectra for protein resonance assignment and structure determination. J Biomol NMR 54:343–353

    Article  Google Scholar 

  • Schmidt-Rohr K, Mao JD (2002) Efficient CH-group selection and identification in C-13 solid-state NMR by dipolar DEPT and H-1 chemical-shift filtering. J Am Chem Soc 124:13938–13948

    Article  Google Scholar 

  • Traaseth NJ, Veglia G (2011) Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. J Magn Reson 211:18–24

    Article  ADS  Google Scholar 

  • Tycko R (2007) Stochastic dipolar recoupling in nuclear magnetic resonance of solids. Phys Rev Lett 99:187601

    Article  ADS  Google Scholar 

  • Ulrich EL et al (2008) Bio Mag Res Bank. Nucleic Acids Res 36:D402–D408

    Article  Google Scholar 

  • Verel R, Baldus M, Ernst M, Meier BH (1998) A homonuclear spin-pair filter for solid-state NMR based on adiabatic-passage techniques. Chem Phys Lett 287:421–428

    Article  ADS  Google Scholar 

  • Verel R, Ernst M, Meier BH (2001) Adiabatic dipolar recoupling in solid-state NMR: The DREAM scheme. J Magn Reson 150:81–99

    Article  ADS  Google Scholar 

  • Westfeld T, Verel R, Ernst M, Bockmann A, Meier BH (2012) Properties of the DREAM scheme and its optimization for application to proteins. J Biomol NMR 53:103–112

    Article  Google Scholar 

  • Williams JK, Schmidt-Rohr K, Hong M (2015) Aromatic spectral editing techniques for magic-angle-spinning solid-state NMR spectroscopy of uniformly C-13-labeled proteins. Solid State Nucl Magn Reson 72:118–126

    Article  Google Scholar 

  • Wu XL, Burns ST, Zilm KW (1994) Spectral editing in CPMAS NMR - generating subspectra based on proton multiplicities. J Magn Reson, Ser A 111:29–36

    Article  ADS  Google Scholar 

  • Wu XL, Zilm KW (1993) Complete spectral editing in CPMAS NMR. J Magn Reson, Ser A 102:205–213

    Article  ADS  Google Scholar 

  • Xie H, Zhao Y, Wang J, Zhang Z, Yang J (2018) Solid-state NMR chemical shift assignments of aquaporin Z in lipid bilayers. Biomol NMR Assign 12:323–328

    Article  Google Scholar 

  • Zech SG, Olejniczak E, Hajduk P, Mack J, McDermot AE (2004) Characterization of protein-ligand interactions by high-resolution solid-state NMR spectroscopy. J Am Chem Soc 126:13948–13953

    Article  Google Scholar 

  • Zhang ZF, Liu H, Deng J, Tycko R, Yang J (2019) Optimization of band-selective homonuclear dipolar recoupling in solid-state NMR by a numerical phase search. J Chem Phys 150:154201

    Article  ADS  Google Scholar 

  • Zhang ZF et al (2020) Selectively Enhanced H-1-H-1 Correlations in Proton-Detected Solid-State NMR under Ultrafast MAS Conditions. J Phys Chem Lett 11:8077–8083

    Article  Google Scholar 

  • Zhao Y et al (2018) Gating mechanism of aquaporin Z in synthetic bilayers and native membranes revealed by solid-state NMR spectroscopy. J Am Chem Soc 140:7885–7895

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key R&D Program of China (2016YFA0501200, 2017YFA0505400), the National Natural Science Foundation of China (21775161, 22074153, 21927801, 31627803, 31770798 and 21921004) and Chinese Academy of Sciences (YJKYYQ20190032).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengfeng Zhang or Jun Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Zhang, Z., Zhao, Y. et al. Spectral editing of alanine, serine, and threonine in uniformly labeled proteins based on frequency-selective homonuclear recoupling in solid-state NMR. J Biomol NMR 75, 193–202 (2021). https://doi.org/10.1007/s10858-021-00367-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-021-00367-9

Keywords

Navigation