Skip to main content

Advertisement

Log in

Determining methyl sidechain conformations in a CS-ROSETTA model using methyl 1H-13C residual dipolar couplings

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Modelling of protein structures based on backbone chemical shifts, using programs such as CS-ROSETTA, is becoming increasingly popular, especially for systems where few restraints are available or where homologous structures are already known. While the reliability of CS-ROSETTA calculations can be improved by incorporation of some additional backbone NMR data such as those afforded by residual dipolar couplings or minimal NOE data sets involving backbone amide protons, the sidechain conformations are largely modelled by statistical energy terms. Here, we present a simple method based on methyl residual dipolar couplings that can be used to determine the rotameric state of the threefold symmetry axis of methyl groups that occupy a single rotamer, determine rotameric distributions, and identify regions of high flexibility. The method is demonstrated for methyl side chains of a deletion variant of the human chaperone DNAJB6b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Anthis NJ, Clore GM (2015) Visualizing transient dark states by NMR spectroscopy. Quart Rev Biophys 48:1–82

    Article  Google Scholar 

  • Chou JJ, Case DA, Bax A (2003) Insights into the mobility of methyl-bearing side chains in proteins from 3JCC and 3JCN couplings. J Am Chem Soc 125:8959–8966

    Article  Google Scholar 

  • Clore GM, Garrett DS (1999) R-factor, free R, and complete cross-validation for dipolar coupling refinement of NMR structures. J Am Chem Soc 121:9008–9012

    Article  Google Scholar 

  • Clore GM, Kuszewski J (2002) χ1 rotamer populations and angles of mobile surface side chains are accurately predicted by a torsion angle database potential of mean force. J Am Chem Soc 124:2866–2867

    Article  Google Scholar 

  • Hansen DF, Kay LE (2011) Determining valine sidechain rotamer conformations in proteins from methyl 13C chemical shifts: application to the 360 kda half-proteasome. J Am Chem Soc 133:8272–8281

    Article  Google Scholar 

  • Hansen DF, Neudecker P, Kay LE (2010a) Determination of isoleucine sidechain conformations in ground and excited states of proteins from chemical shifts. J Am Chem Soc 132:7589–7591

    Article  Google Scholar 

  • Hansen DF, Neudecker P, Vallurupalli P, Mulder FAA, Kay LE (2010b) Determination of Leu sidechain conformations in excited protein states by NMR relaxation dispersion. J Am Chem Soc 132:42–43

    Article  Google Scholar 

  • Karamanos TK, Tugarinov V, Clore GM (2019) Unraveling the structure and dynamics of the human DNAJB6b chaperone by NMR reveals insights into HSP40-mediated proteostasis. Proc Natl Acad Sci USA 43:21529–21538

    Article  Google Scholar 

  • Kuszewski J, Gronenborn AM, Clore GM (1996) Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Protein Sci 5:1067–1080

    Article  Google Scholar 

  • Leaver-Fay A et al (2011) Rosetta3: An object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  Google Scholar 

  • Lovell SC, Word JM, Richardson JS, Richardson DC (2000) The penultimate rotamer library. Proteins 40:389–408

    Article  Google Scholar 

  • Mittermaier A, Kay LE (2001) χ1 torsion angle dynamics in proteins from dipolar couplings. J Am Chem Soc 123:6892–6903

    Article  Google Scholar 

  • Mittermaier A, Kay LE (2002) Effect of deuteration on some structural parameters of methyl groups in proteins as evaluated by residual dipolar couplings. J Biomol NMR 23:35–45

    Article  Google Scholar 

  • Neri D, Szyperski T, Otting G, Senn H, Wüthrich K (1989) Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DNA-binding domain of the 434 repressor by biosynthetically directed fractional carbon-13 labeling. Biochemistry 28:7510–7516

    Article  Google Scholar 

  • Nerli S, McShan AC, Sgourakis NG (2018) Chemical shift-based methods in NMR structure determination. Progr Nucl Magn Res Spec 106–107:1–25

    Google Scholar 

  • Ollerenshaw JE, Tugarinov V, Kay LE (2003) Methyl TROSY: Explanation and experimental verification. Magn Reson Chem 41:843–852

    Article  Google Scholar 

  • Ottiger M, Bax A (1999) How tetrahedral are methyl groups in proteins? A liquid crystal NMR study. J Am Chem Soc 121:4690–4695

    Article  Google Scholar 

  • Ottiger M, Delaglio F, Bax A (1998a) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131:373–378

    Article  ADS  Google Scholar 

  • Ottiger M, Delaglio F, Marquardt JL, Tjandra N, Bax A (1998b) Measurement of dipolar couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure determination. J Magn Reson 134:365–369

    Article  ADS  Google Scholar 

  • Raman S et al (2010) NMR structure determination for larger proteins using backbone-only data. Science 327:1014–1018

    Article  ADS  Google Scholar 

  • Rosenzweig R, Kay LE (2014) Bringing dynamic molecular machines into focus by methyl-TROSY NMR. Annu Rev Biochem 83:291–315

    Article  Google Scholar 

  • Rückert M, Otting G (2000) Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments. J Am Chem Soc 122:7793–7797

    Article  Google Scholar 

  • Schwieters CD, Bermejo GA, Clore GM (2018) Xplor-NIH for molecular structure determination from NMR and other data sources. Protein Sci 27:26–40

    Article  Google Scholar 

  • Sgourakis NG et al (2014) The structure of mouse cytomegalovirus M04 protein obtained from sparse NMR data reveals a conserved fold of the M02–M06 viral immune modulator family. Structure 22:1263–1273

    Article  Google Scholar 

  • Shen Y et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    Article  ADS  Google Scholar 

  • Sprangers R, Kay LE (2007) Probing supramolecular structure from measurement of methyl 1H–13C residual dipolar couplings. J Am Chem Soc 129:12668–12669

    Article  Google Scholar 

  • Tang C, Iwahara J, Clore GM (2005) Accurate determination of leucine and valine sidechain conformations using U-[15N/13C/2H]/[1H-(methine/methyl)-Leu/Val] isotope labeling, NOE pattern recognition, and methine Cγ–Hγ/Cβ–Hβ residual dipolar couplings: Application to the 34-kDa enzyme IIAchitobiose. J Biomol NMR 33:105–121

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2004) An isotope labeling strategy for methyl TROSY spectroscopy. J Biomol NMR 28:165–172

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2005) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. ChemBioChem 6:1567–1577

    Article  Google Scholar 

  • Tugarinov V, Kay LE (2013) Estimating sidechain order in [U-2H; 13CH3]-labeled high molecular weight proteins from analysis of HMQC/HSQC spectra. J Phys Chem B 117:3571–3577

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H–13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428

    Article  Google Scholar 

  • Tugarinov V, Karamanos TK, Ceccon A, Clore GM (2020) Optimized NMR experiments for the isolation of I = 1/2 manifold transitions in methyl groups of proteins. ChemPhysChem. https://doi.org/10.1002/cphc.201900959

    Article  Google Scholar 

  • Yang D, Nagayama K (1996) A sensitivity-enhanced method for measuring heteronuclear long-range coupling constants from the displacement of signals in two 1D subspectra. J Magn Reson Ser A 118:117–121

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Drs. James Baber, Jinfa Ying and Dan Garrett for technical support. This work was supported by the Intramural Program of the National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (DK029023 to G.M.C.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vitali Tugarinov or G. Marius Clore.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10858_2019_294_MOESM1_ESM.pdf

Supplementary file 1 The pulse scheme used for recording the J-modulated interferograms (Fig. S1). Description of theoretical considerations involved in the interpretation of J-modulated interferograms of 13CH3 methyl groups in the presence of spin relaxation according to Eq. (2) (Fig. S2). A plot of values obtained for ΔST-DNAJB6b using the described analysis of J-modulated interferograms (Fig. S3). ‘Materials and Methods’ section describing the details of NMR sample preparation, NMR experiments and structure calculation protocols. (PDF 605 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karamanos, T.K., Tugarinov, V. & Clore, G.M. Determining methyl sidechain conformations in a CS-ROSETTA model using methyl 1H-13C residual dipolar couplings. J Biomol NMR 74, 111–118 (2020). https://doi.org/10.1007/s10858-019-00294-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-019-00294-w

Keywords

Navigation