Skip to main content
Log in

BEST and SOFAST experiments for resonance assignment of histidine and tyrosine side chains in 13C/15N labeled proteins

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Aromatic amino-acid side chains are essential components for the structure and function of proteins. We present herein a set of NMR experiments for time-efficient resonance assignment of histidine and tyrosine side chains in uniformly 13C/15N-labeled proteins. The use of band-selective 13C pulses allows to deal with linear chains of coupled spins, thus avoiding signal loss that occurs in branched spin systems during coherence transfer. Furthermore, our pulse schemes make use of longitudinal 1H relaxation enhancement, Ernst-angle excitation, and simultaneous detection of 1H and 13C steady-state polarization to achieve significant signal enhancements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Baker CM, Grant GH (2007) Role of aromatic amino acids in protein–nucleic acid recognition. Biopolymers 85:456–470

    Article  Google Scholar 

  • Bartlett GJ, Porter CT, Borkakoti N, Thornton JM (2002) Analysis of catalytic residues in enzyme active sites. J Mol Biol 324:105–121

    Article  Google Scholar 

  • Blomberg F, Maurer W, Rüterjans H (1976) Nuclear magnetic resonance investigation of 15N-labeled histidine in aqueous solution. J Am Chem Soc 2932:8149–8159

    Google Scholar 

  • Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9

    Article  Google Scholar 

  • Brutscher B (2000) Principles and applications of cross-correlated relaxation in biomolecules. Concepts Magn Reson 12:207–229

    Article  Google Scholar 

  • Brutscher B, Solyom Z (2017) Polarization-enhanced Fast-pulsing Techniques. In: Fast NMR data acquisition. pp 1–48

  • Brutscher B, Boisbouvier J, Pardi A et al (1998) Improved Sensitivity and resolution in 1 H–13 C NMR experiments of RNA. J Am Chem Soc 120:11845–11851

    Article  Google Scholar 

  • El Khatib M, Martins A, Bourgeois D et al (2016) Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm. Sci Rep 6:18459

    Article  ADS  Google Scholar 

  • Eletsky A, Atreya HS, Liu G, Szyperski T (2005) Probing structure and functional dynamics of (large) proteins with aromatic rings: L-GFT-TROSY (4,3)D HCCH NMR spectroscopy. J Am Chem Soc 127:14578–14579

    Article  Google Scholar 

  • Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49:9–15

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-Selective Radiofrequency Pulses. J Magn Reson 93:93–141

    ADS  Google Scholar 

  • Hansen AL, Kay LE (2014) Measurement of histidine pKa values and tautomer populations in invisible protein states. Proc Natl Acad Sci 111:E1705–E1712

    Article  ADS  Google Scholar 

  • Holliday GL, Mitchell JBO, Thornton JM (2009) Understanding the functional roles of amino acid residues in enzyme catalysis. J Mol Biol 390:560–577

    Article  Google Scholar 

  • Hu J, Fu R, Nishimura K et al (2006) Histidines, heart of the hydrogen ion channel from influenza A virus: toward an understanding of conductance and proton selectivity. Proc Natl Acad Sci 103:6865–6870

    Article  ADS  Google Scholar 

  • Jacob J, Louis JM, Nesheiwat I, Torchia DA (2002) Biosynthetically directed fractional13C labeling facilitates identification of Phe and Tyr aromatic signals in proteins. J Biomol NMR 24:231–235

    Article  Google Scholar 

  • Kupce E, Freeman R (1993) Polychromatic selective pulses. J Magn Reson A 102:122–126

    Article  ADS  Google Scholar 

  • Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169

    Article  ADS  Google Scholar 

  • Li S, Hong M (2011) Protonation, tautomerization, and rotameric structure of histidine: A comprehensive study by magic-angle-spinning solid-state NMR. J Am Chem Soc 133:1534–1544

    Article  Google Scholar 

  • Löhr F, Rüterjans H (1996) Novel pulse sequences for the resonance assignment of aromatic side chains in 13C-labeled proteins. J Magn Reson 112:259–268

    Article  Google Scholar 

  • Pelton JG, Torchia DA, Meadow ND, Roseman S (1993) Tautomeric states of the active-site histidines of phosphorylated and unphosphorylated I11 Glc, a signal-transducing protein from Escherichia coli, using two-dimensional heteronuclear NMR techniques. Protein Sci 2:543–558

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1998) Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in 13C-labeled proteins. J Am Chem Soc 120:6394–6400

    Article  Google Scholar 

  • Pervushin K, Vo B, Eletsky A (2002) Longitudinal 1H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124:12898–12902

    Article  Google Scholar 

  • Prompers JJ, Groenewegen A, Hilbers CW, Pepermans HAM (1998) Two-dimensional NMR experiments for the assignment of aromatic side chains in 13 C-labeled proteins. J Biomol NMR 75:68–75

    Google Scholar 

  • Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015

    Article  Google Scholar 

  • Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211

    Article  Google Scholar 

  • Schanda P, Van Melckebeke H, Brutscher B (2006) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043

    Article  Google Scholar 

  • Schmidt H, Himmel S, Walter KFA et al (2008) Transverse relaxation-optimized HCN experiment for tautomeric states of histidine sidechains. J Korean Magn Reson Soc 12:89–95

    Article  Google Scholar 

  • Shaka AJ, Lee CJ, Pines A (1988) Iterative schemes for bilinear operators; application to spin decoupling. J Magn Reson 77:274–293

    ADS  Google Scholar 

  • Shimahara H, Yoshida T, Shibata Y et al (2007) Tautomerism of histidine 64 associated with proton transfer in catalysis of carbonic anhydrase. J Biol Chem 282:9646–9656

    Article  Google Scholar 

  • Smith MA, Hu H, Shaka AJ (2001) Improved broadband inversion performance for NMR in liquids. J Magn Reson 151:269–283

    Article  ADS  Google Scholar 

  • Sudmeier JL, Ash EL, Günther UL et al (1996) HCN, a triple-resonance NMR technique for selective observation of histidine and tryptophan side chains in13C/15N-labeled proteins. J Magn Reson 113:236–247

    Article  Google Scholar 

  • Sudmeier JL, Bradshaw EM, Coffman Haddad KE et al (2003) Identification of histidine tautomers in proteins by 2D 1H/13Cδ2 one-bond correlated NMR. J Am Chem Soc 125:8430–8431

    Article  Google Scholar 

  • Veeman WS (1984) Carbon-13 chemical shift anisotropy. Prog Nucl Magn Reson Spectrosc 16:193–235

    Article  Google Scholar 

  • Weininger U, Respondek M, Akke M (2012) Conformational exchange of aromatic side chains characterized by L-optimized TROSY-selected 13C CPMG relaxation dispersion. J Biomol NMR 54:9–14

    Article  Google Scholar 

  • Weininger U, Brath U, Modig K et al (2014) Off-resonance rotating-frame relaxation dispersion experiment for13C in aromatic side chains using L-optimized TROSY-selection. J Biomol NMR 59:23–29

    Article  Google Scholar 

  • Yamashita MM, Wesson L, Eisenman G, Eisenberg D (1990) Where metal ions bind in proteins. Proc Natl Acad Sci 87:5648–5652

    Article  ADS  Google Scholar 

  • Yamazaki T, Forman-Kay JD, Kay LE (1993) Two-dimensional NMR experiments for correlating 13CB and 1HD chemical shifts of aromatic residues in 13C-labeled proteins via scalar couplings. J Am Chem Soc 115:11054–11055

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dominique Bourgeois and Virgile Adam for making the rsfolder plasmid available, and Isabel Ayala and Karine Giandoreggio for protein sample preparation. We acknowledge support from the CNRS (Défis Instrumentation 2018). This work used the NMR and isotope labeling platforms of the Grenoble Instruct center (ISBG; UMS 3518 CNRS-CEA-UJF-EMBL) with support from FRISBI (ANR-10-INSB-05-02) and GRAL (ANR-10-LABX-49-01) within the Grenoble Partnership for Structural Biology (PSB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Brutscher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christou, N.E., Brutscher, B. BEST and SOFAST experiments for resonance assignment of histidine and tyrosine side chains in 13C/15N labeled proteins. J Biomol NMR 72, 115–124 (2018). https://doi.org/10.1007/s10858-018-0216-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-018-0216-z

Keywords

Navigation