Skip to main content
Log in

Simultaneous determination of fast and slow dynamics in molecules using extreme CPMG relaxation dispersion experiments

  • Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Molecular dynamics play a significant role in how molecules perform their function. A critical method that provides information on dynamics, at the atomic level, is NMR-based relaxation dispersion (RD) experiments. RD experiments have been utilized for understanding multiple biological processes occurring at micro-to-millisecond time, such as enzyme catalysis, molecular recognition, ligand binding and protein folding. Here, we applied the recently developed high-power RD concept to the Carr–Purcell–Meiboom–Gill sequence (extreme CPMG; E-CPMG) for the simultaneous detection of fast and slow dynamics. Using a fast folding protein, gpW, we have shown that previously inaccessible kinetics can be accessed with the improved precision and efficiency of the measurement by using this experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Akke M, Palmer AG (1996) Monitoring macromolecular motions on microsecond to millisecond time scales by R(1)rho-R(1) constant relaxation time NMR spectroscopy. J Am Chem Soc 118:911–912

    Article  Google Scholar 

  • Akke M, Liu J, Cavanagh J, Erickson HP, Palmer AG (1998) Pervasive conformational fluctuations on microsecond time scales in a fibronectin type III domain. Nat Struct Biol 5:55–59

    Article  Google Scholar 

  • Ban D et al (2011) Kinetics of conformational sampling in ubiquitin. Angew Chem Int Ed 50:11437–11440

    Article  Google Scholar 

  • Ban D et al (2012) Exceeding the limit of dynamics studies on biomolecules using high spin-lock field strengths with a cryogenically cooled probehead. J Magn Reson 221:1–4

    Article  ADS  Google Scholar 

  • Ban D et al (2013) Enhanced accuracy of kinetic information from CT-CPMG experiments by transverse rotating-frame spectroscopy. J Biomol NMR 57:73–82

    Article  Google Scholar 

  • Boehr DD, Dyson HJ, Wright PE (2006) An NMR perspective on enzyme dynamics. Chem Rev 106:3055–3079

    Article  Google Scholar 

  • Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  ADS  Google Scholar 

  • Eisenmesser EZ et al (2005) Intrinsic dynamics of an enzyme underlies catalysis. Nature 438:117–121

    Article  ADS  Google Scholar 

  • Fung A, Li P, Godoy-Ruiz R, Sanchez-Ruiz JM, Munoz V (2008) Expanding the realm of ultrafast protein folding: gpW, a midsize natural single-domain with alpha + beta topology that folds downhill. J Am Chem Soc 130:7489–7495

    Article  Google Scholar 

  • Hansen DF, Vallurupalli P, Kay LE (2008) An improved (15)N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112:5898–5904

    Article  Google Scholar 

  • Ishima R (2012) Recent developments in (15)N NMR relaxation studies that probe protein backbone dynamics. Top Curr Chem 326:99–122

    Article  Google Scholar 

  • Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25:243–248

    Article  Google Scholar 

  • Jiang B, Yu B, Zhang X, Liu M, Yang D (2015) A (15)N CPMG relaxation dispersion experiment more resistant to resonance offset and pulse imperfection. J Magn Reson 257:1–7

    Article  ADS  Google Scholar 

  • Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665

    Article  Google Scholar 

  • Korzhnev DM, Kay LE (2008) Probing invisible, low-populated States of protein molecules by relaxation dispersion NMR spectroscopy: an application to protein folding. Acc Chem Res 41:442–451

    Article  Google Scholar 

  • Korzhnev DM, Tischenko EV, Arseniev AS (2000) Off-resonance effects in 15N T2 CPMG measurements. J Biomol NMR 17:231–237

    Article  Google Scholar 

  • Korzhnev DM, Orekhov VY, Kay LE (2005) Off-resonance R(1rho) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. J Am Chem Soc 127:713–721

    Article  Google Scholar 

  • Lange OF et al (2008) Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution. Science 320:1471–1475

    Article  ADS  Google Scholar 

  • Long D, Liu M, Yang D (2008) Accurately probing slow motions on millisecond timescales with a robust NMR relaxation experiment. J Am Chem Soc 130:2432–2433

    Article  Google Scholar 

  • Loria JP, Rance M, Palmer AG (1999) A relaxation-compensated Carr–Purcell–Meiboom–Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121:2331–2332

    Article  Google Scholar 

  • Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2d NMR-spectra without phase cycling: application to the study of hydrogen-exchange in proteins. J Magn Reson 85:393–399

    ADS  Google Scholar 

  • Meekhof AE, Hamill SJ, Arcus VL, Clarke J, Freund SMV (1998) The dependence of chemical exchange on boundary selection in a fibronectin type III domain from human tenascin. J Mol Biol 282:181–194

    Article  Google Scholar 

  • Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691

    Article  ADS  Google Scholar 

  • Mittermaier A, Kay LE (2006) New tools provide new insights in NMR studies of protein dynamics. Science 312:224–228

    Article  ADS  Google Scholar 

  • Moschen T et al (2016) Measurement of ligand-target residence times by 1H relaxation dispersion NMR spectroscopy. J Med Chem 59:10788–10793

    Article  Google Scholar 

  • Mulder FAA, van Tilborg PJA, Kaptein R, Boelens R (1999) Microsecond time scale dynamics in the RXR DNA-binding domain from a combination of spin-echo and off-resonance rotating frame relaxation measurements. J Biomol NMR 13:275–288

    Article  Google Scholar 

  • Naganathan AN, Doshi U, Munoz V (2007) Protein folding kinetics: barrier effects in chemical and thermal denaturation experiments. J Am Chem Soc 129:5673–5682

    Article  Google Scholar 

  • Neudecker P, Lundstrom P, Kay LE (2009) Relaxation dispersion NMR spectroscopy as a tool for detailed studies of protein folding. Biophys J 96:2045–2054

    Article  Google Scholar 

  • Orekhov VY, Pervushin KV, Arseniev AS (1994) Backbone dynamics of (1–71)Bacterioopsin studied by 2-dimensional H-1-N-15 NMR-spectroscopy. Eur J Biochem 219:887–896

    Article  Google Scholar 

  • Palmer AG 3rd, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  Google Scholar 

  • Palmer AG 3rd (2004) NMR characterization of the dynamics of biomacromolecules. Chem Rev 104:3623–3640

    Article  Google Scholar 

  • Palmer AG 3rd (2015) Enzyme dynamics from NMR spectroscopy. Acc Chem Res 48:457–465

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    Article  ADS  Google Scholar 

  • Pratihar S et al (2016) Kinetics of the antibody recognition site in the third IgG-binding domain of protein G. Angew Chem Int Ed 55:9566–9569

    Article  Google Scholar 

  • Sanchez-Medina C et al (2014) Probing the free energy landscape of the fast-folding gpW protein by relaxation dispersion NMR. J Am Chem Soc 136:7444–7451

    Article  Google Scholar 

  • Sborgi L, Verma A, Munoz V, de Alba E (2011) Revisiting the NMR structure of the ultrafast downhill folding protein gpW from bacteriophage lambda. PLoS ONE 6:e26409

    Article  ADS  Google Scholar 

  • Sborgi L et al (2015) Interaction networks in protein folding via atomic-resolution experiments and long-time-scale molecular dynamics simulations. J Am Chem Soc 137:6506–6516

    Article  Google Scholar 

  • Schleucher J, Sattler M, Griesinger C (1993) Coherence selection by gradients without signal attenuation: application to the 3-dimensional Hnco experiment. Angew Chem Int Ed Engl 32:1489–1491

    Article  Google Scholar 

  • Schneider R et al (2015) Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR. J Am Chem Soc 137:1220–1229

    Article  Google Scholar 

  • Skrynnikov NR, Dahlquist FW, Kay LE (2002) Reconstructing NMR spectra of “invisible” excited protein states using HSQC and HMQC experiments. J Am Chem Soc 124:12352–12360

    Article  Google Scholar 

  • Smith CA et al (2015) Population shuffling of protein conformations. Angew Chem Int Ed 54:207–210

    Article  Google Scholar 

  • Szyperski T, Luginbuhl P, Otting G, Guntert P, Wuthrich K (1993) Protein dynamics studied by rotating frame N-15 spin relaxation-times. J Biomol NMR 3:151–164

    Google Scholar 

  • Tamiola K, Acar B, Mulder FA (2010) Sequence-specific random coil chemical shifts of intrinsically disordered proteins. J Am Chem Soc 132:18000–18003

    Article  Google Scholar 

  • Tollinger M, Skrynnikov NR, Mulder FA, Forman-Kay JD, Kay LE (2001) Slow dynamics in folded and unfolded states of an SH3 domain. J Am Chem Soc 123:11341–11352

    Article  Google Scholar 

  • Trott O, Palmer AG 3rd (2002) R1rho relaxation outside of the fast-exchange limit. J Magn Reson 154:157–160

    Article  ADS  Google Scholar 

  • Tugarinov V, Libich DS, Meyer V, Roche J, Clore GM (2015) The energetics of a three-state protein folding system probed by high-pressure relaxation dispersion NMR spectroscopy. Angew Chem Int Ed Engl 54:11157–11161

    Article  Google Scholar 

  • Vallurupalli P, Bouvignies G, Kay LE (2011) Increasing the exchange time-scale that can be probed by CPMG relaxation dispersion NMR. J Phys Chem B 115:14891–14900

    Article  Google Scholar 

  • Yip GN, Zuiderweg ER (2004) A phase cycle scheme that significantly suppresses offset-dependent artifacts in the R2-CPMG 15N relaxation experiment. J Magn Reson 171:25–36

    Article  ADS  Google Scholar 

  • Zinn-Justin S, Berthault P, Guenneugues M, Desvaux H (1997) Off-resonance rf fields in heteronuclear NMR: application to the study of slow motions. J Biomol NMR 10:363–372

    Article  Google Scholar 

  • Zintsmaster JS, Wilson BD, Peng JW (2008) Dynamics of ligand binding from 13C NMR relaxation dispersion at natural abundance. J Am Chem Soc 130:14060–14061

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the James Graham Brown Foundation, the National Center for Research Resources CoBRE 1P30GM106396, the Max Planck Society, and the EU (ERC Grant Agreement Number 233227 to C.G.). We thank Maria Paulat and Melanie Wegstroth for technical help in gpW sample preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghan Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4654 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, J.G., Pratihar, S., Ban, D. et al. Simultaneous determination of fast and slow dynamics in molecules using extreme CPMG relaxation dispersion experiments. J Biomol NMR 70, 1–9 (2018). https://doi.org/10.1007/s10858-017-0155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0155-0

Keywords

Navigation