Journal of Biomolecular NMR

, Volume 69, Issue 1, pp 31–44 | Cite as

Evaluation of 15N-detected H–N correlation experiments on increasingly large RNAs

  • Robbin Schnieders
  • Christian Richter
  • Sven Warhaut
  • Vanessa de Jesus
  • Sara Keyhani
  • Elke Duchardt-Ferner
  • Heiko Keller
  • Jens Wöhnert
  • Lars T. Kuhn
  • Alexander L. Breeze
  • Wolfgang Bermel
  • Harald Schwalbe
  • Boris Fürtig
Article
  • 466 Downloads

Abstract

Recently, 15N-detected multidimensional NMR experiments have been introduced for the investigation of proteins. Utilization of the slow transverse relaxation of nitrogen nuclei in a 15N-TROSY experiment allowed recording of high quality spectra for high molecular weight proteins, even in the absence of deuteration. Here, we demonstrate the applicability of three 15N-detected H–N correlation experiments (TROSY, BEST-TROSY and HSQC) to RNA. With the newly established 15N-detected BEST-TROSY experiment, which proves to be the most sensitive 15N-detected H–N correlation experiment, spectra for five RNA molecules ranging in size from 5 to 100 kDa were recorded. These spectra yielded high resolution in the 15N-dimension even for larger RNAs since the increase in line width with molecular weight is more pronounced in the 1H- than in the 15N-dimension. Further, we could experimentally validate the difference in relaxation behavior of imino groups in AU and GC base pairs. Additionally, we showed that 15N-detected experiments theoretically should benefit from sensitivity and resolution advantages at higher static fields but that the latter is obscured by exchange dynamics within the RNAs.

Keywords

15N direct detection RNA BEST-TROSY Line width analysis Field dependence Exchange 

Notes

Acknowledgements

Matthias Görlach from the Core Facilities and Services (CS Protein Production) of the Fritz Lipmann Institute, Jena, is gratefully acknowledged for providing the 329 nt RNA.

Funding

This work was funded by the German funding agency (DFG) in Collaborative Research Center 902: Molecular principles of RNA-based regulation and in Graduate College: CLIC (GRK1982). Financial support by European access program (iNEXT) is gratefully acknowledged. Harald Schwalbe is member of the DFG-funded Cluster of Excellence: macromolecular complexes (EXC115). Robbin Schnieders is supported by the Fonds of the Chemical Industry. Work at BMRZ is supported by the state of Hesse. We acknowledge access to the 950 MHz spectrometer of the Astbury BioStructure Laboratory BioNMR Facility (University of Leeds) which was funded by the University of Leeds.

Supplementary material

10858_2017_132_MOESM1_ESM.docx (548 kb)
Supplementary material 1 (DOCX 547 KB)

References

  1. Adrian M, Heddi B, Phan AT (2012) NMR spectroscopy of G-quadruplexes. Methods 57:11–24CrossRefGoogle Scholar
  2. Alexandrescu AT, Loh SN, Markley JL (1990) Chemical exchange spectroscopy based on carbon-13 NMR. Applications to enzymology and protein folding. J Magn Reson 87:523–535ADSGoogle Scholar
  3. Alvarado LJ, Leblanc RM, Longhini AP, Keane SC, Jain N, Yildiz ZF, Tolbert BS, Souza V. M. D., Summers MF, Kreutz C, Dayie TK (2014) Regio-selective chemical-enzymatic synthesis of pyrimidine nucleotides facilitates RNA structure and dynamics studies. ChemBioChem 15:1573–1577CrossRefGoogle Scholar
  4. Bax A, Morris GA (1981) An improved method for heteronuclear chemical shift correlation by two-dimensional NMR. J Magn Reson 42:501–505ADSGoogle Scholar
  5. Bermel W, Bertini I, Felli IC, Piccioli M, Pierattelli R (2006a) 13C-detected protonless NMR spectroscopy of proteins in solution. Prog Nucl Magn Reson Spectrosc 48:25–45CrossRefGoogle Scholar
  6. Bhattacharya PK, Cha J, Barton JK (2002) 1H NMR determination of base-pair lifetimes in oligonucleotides containing single base mismatches. Nucleic Acids Res 30:4740–4750CrossRefGoogle Scholar
  7. Czernek J (2001) An ab Initio study of hydrogen bonding effects on the tensors in the Watson—Crick base pairs 15N and 1H chemical shielding. J Phys Chem 105:1357–1365CrossRefGoogle Scholar
  8. de la Torre JG, Huertas ML, Carrasco B. HYDRONMR (2000) Prediction of NMR relaxation of globular proteins from atomic-level structures and hydrodynamic calculations. J Magn Reson 147:138–146CrossRefADSGoogle Scholar
  9. Dethoff EA, Petzold K, Chugh J, Casiano-negroni A, Al-Hashimi HM (2012) Visualizing transient low-populated structures of RNA. Nature 491:724–728ADSGoogle Scholar
  10. Dingley AJ, Grzesiek S (1998) Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J Am Chem Soc 7863:714–718Google Scholar
  11. Dittmer J, Kim C-H, Bodenhausen G (2003) Similarities between intra- and intermolecular hydrogen bonds in RNA kissing complexes found by means of cross-correlated relaxation. J Biomol NMR 26:259–275CrossRefGoogle Scholar
  12. Duchardt-Ferner E, Gottstein-Schmidtke SR, Weigand JE, Ohlenschläger O, Wurm J-P, Hammann C, Suess B, Wöhnert J (2016) What a difference an OH makes: conformational dynamics as the basis for the ligand specificity of the neomycin-sensing riboswitch. Angew Chem Int Ed 55:1527–1530CrossRefGoogle Scholar
  13. Fares C, Amata I, Carlomagno T (2007) 13C-detection in RNA bases: revealing structure - chemical shift relationships. J Am Chem Soc 129:15814–15823CrossRefGoogle Scholar
  14. Favier A, Brutscher B (2011) Recovering lost magnetization: polarization enhancement in biomolecular NMR. J Biomol NMR 49:9–15CrossRefGoogle Scholar
  15. Felli IC, Pierattelli R (2014) Novel methods based on proteins 13C detection to study intrinsically disordered proteins. J Magn Reson 241:115–125CrossRefADSGoogle Scholar
  16. Fiala R, Sklenár V (2007) 13C-detected NMR experiments for measuring chemical shifts and coupling constants in nucleic acid bases. J Biomol NMR 39:153–163CrossRefGoogle Scholar
  17. Fürtig B, Richter C, Bermel W, Schwalbe H (2004) New NMR experiments for RNA nucleobase resonance assignment and chemical shift analysis of an RNA UUCG tetraloop. J Biomol NMR 28:69–79CrossRefGoogle Scholar
  18. Fürtig B, Schnieders R, Richter C, Zetzsche H, Keyhani S, Helmling C, Kovacs H, Schwalbe H (2016) Direct 13C-detected NMR experiments for mapping and characterization of hydrogen bonds in RNA. J Biomol NMR 64:207–221CrossRefGoogle Scholar
  19. Gal M, Edmonds KA, Milbradt AG, Takeuchi K, Wagner G (2011) Speeding up direct 15N detection: hCaN 2D NMR experiment. J Biomol NMR 51:497–504CrossRefGoogle Scholar
  20. Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141ADSGoogle Scholar
  21. Grishaev A, Yao L, Ying J, Pardi A, Bax A (2009) Chemical shift anisotropy of imino 15N nuclei in Watson—Crick base pairs from magic angle spinning liquid crystal NMR and nuclear spin relaxation. J Am Chem Soc 131:9490–9491CrossRefGoogle Scholar
  22. Grzesiek S, Bax A (1993) The Importance of not saturating H2O in protein NMR. Application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593–12594CrossRefGoogle Scholar
  23. Guillerez J, Lopez PJ, Proux F, Launay H, Dreyfus M (2005) A mutation in T7 RNA polymerase that facilitates promoter clearance. Proc Natl Acad Sci USA 102:5958–5963CrossRefADSGoogle Scholar
  24. Helmling C, Keyhani S, Sochor F, Fürtig B, Hengesbach M, Schwalbe H (2015) Rapid NMR screening of RNA secondary structure and binding. 63:67–76Google Scholar
  25. Imai S, Kumar P, Hellen CUT., Souza VMD., Wagner G (2016) An accurately preorganized IRES RNA structure enables eIF4G capture for initiation of viral translation. Nat Struct Mol Biol 23:859–864CrossRefGoogle Scholar
  26. Kovacs H, Moskau D, Spraul M (2005) Cryogenically cooled probes—a leap in NMR technology. Prog Nucl Magn Reson Spectrosc 46:131–155CrossRefGoogle Scholar
  27. Leppert J, Urbinati CR, Häfner S, Ohlenschläger O, Swanson MS, Görlach M, Ramachandran R (2004) Identification of NH N hydrogen bonds by magic angle spinning solid state NMR in a double-stranded RNA associated with myotonic dystrophy. Nucleic Acids Res 32:1177–1183CrossRefGoogle Scholar
  28. Lu K, Heng X, Garyu L, Monti S, Garcia EL, Kharytonchyk S, Dorjsuren B, Kulandaivel G, Jones S, Hiremath A, Divakaruni SS, Lacotti C, Barton S, Tummillo D, Hosic A, Edme K, Albrecht S, Telesnitsky A, Summers MF (2011) NMR detection of structures in the HIV-1 5′-leader RNA that regulate genome packaging. Science 334:242–245CrossRefADSGoogle Scholar
  29. Noeske J, Richter C, Grundl MA, Nasiri HR, Schwalbe H, Wöhnert J (2005) An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proc Natl Acad Sci 102:1372–1377CrossRefADSGoogle Scholar
  30. Nozinovic S, Fürtig B, Jonker HRA, Richter C, Schwalbe H (2010) High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res 38:683–694CrossRefGoogle Scholar
  31. Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646CrossRefADSGoogle Scholar
  32. Pervushin K, Eletsky A (2003) A new strategy for backbone resonance assignment in large proteins using a MQ-HACACO experiment. J Biomol NMR 25:147–152CrossRefGoogle Scholar
  33. Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci 94:12366–12371CrossRefADSGoogle Scholar
  34. Redfield AG (1957) On the theory of relaxation processes. IBM J Res Dev 1:19–31CrossRefGoogle Scholar
  35. Reining A, Nozinovic S, Schlepckow K, Buhr F, Fürtig B, Schwalbe H (2013) Three-state mechanism couples ligand and temperature sensing in riboswitches. Nature 499:355–359CrossRefADSGoogle Scholar
  36. Richter C, Kovacs H, Buck J, Wacker A, Fürtig B, Bermel W, Schwalbe H (2010) 13C-direct detected NMR experiments for the sequential J-based resonance assignment of RNA oligonucleotides. J Biomol NMR 47:259–269CrossRefGoogle Scholar
  37. Rinnenthal J, Klinkert B, Narberhaus F, Schwalbe H (2010) Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res 38:3834–3847CrossRefGoogle Scholar
  38. Rovnyak D, Hoch JC, Stern AS, Wagner G (2004) Resolution and sensitivity of high field nuclear magnetic resonance. J Biomol NMR 30:1–10CrossRefGoogle Scholar
  39. Sadek M, Brownlee RTC (1995) Study of 15N-labeled paramagnetic compunds by 15N-detected NMR experiments. J Magn Reson 109:70–75CrossRefGoogle Scholar
  40. Serber Z, Richter C, Moskau D, Bo J, Gerfin T, Marek D, Baselgia L, Laukien F, Stern AS, Hoch JC, Dötsch V (2000) New carbon-detected protein NMR experiments using CryoProbes. J Am Chem Soc 122:3554–3555CrossRefGoogle Scholar
  41. Serganov A, Yuan Y, Pikovskaya O, Polonskaia A, Malinina L, Phan AT, Hobartner C, Micura R, Breaker RR, Patel DJ (2004) Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem Biol 11:1729–1741CrossRefGoogle Scholar
  42. Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552ADSGoogle Scholar
  43. Silvers R, Keller H, Schwalbe H, Hengesbach M (2015) Differential scanning fluorimetry for monitoring RNA stability. Chembiochem 16:1109–1114CrossRefGoogle Scholar
  44. Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321CrossRefGoogle Scholar
  45. Stoldt M, Wöhnert J, Görlach M, Brown LR (1998) The NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases. EMBO J 17:6377–6384CrossRefGoogle Scholar
  46. Stoldt M, Wöhnert J, Görlach M, Brown LR (1999) The NMR structure of the 5S rRNA E-domain–protein L25 complex shows preformed and induced recognition. EMBO J 18:6508–6521CrossRefGoogle Scholar
  47. Takeuchi K, Heffron G, Frueh DP, Wagner G (2010) Nitrogen-detected CAN and CON experiments as alternative experiments for main chain NMR resonance assignments. J Biomol NMR 47:271–282CrossRefGoogle Scholar
  48. Takeuchi K, Arthanari H, Shimada I, Wagner G (2015) Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR. J Biomol NMR 63:1–9CrossRefGoogle Scholar
  49. Takeuchi K, Arthanari H, Wagner G (2016a) Perspective: revisiting the field dependence of TROSY sensitivity. J Biomol NMR 66:221–225CrossRefGoogle Scholar
  50. Takeuchi K, Arthanari H, Imai M, Wagner G (2016b) Nitrogen-detected TROSY yields comparable sensitivity to proton-detected TROSY for non-deuterated, large proteins under physiological salt conditions. J Biomol NMR 64:143–151CrossRefGoogle Scholar
  51. Tanaka Y, Ono A (2008) Nitrogen-15 NMR spectroscopy of N-metallated nucleic acids: insights into N NMR parameters and N–metal bonds. Dalton Trans 37:4965–4974. doi: 10.1039/b803510p CrossRefGoogle Scholar
  52. Tanaka Y, Kojima C, Morita EH, Kasai Y, Yamasaki K, Ono A, Kainosho M, Taira K (2002) Identification of the metal ion binding site on an RNA motif from hammerhead ribozymes using 15 N NMR spectroscopy. J Am Chem Soc 124:4595–4601CrossRefGoogle Scholar
  53. Walker SC, Avis JM, Conn GL (2003) General plasmids for producing RNA in vitro transcripts with homogeneous ends. Nucleic Acids Res 31:1–6CrossRefGoogle Scholar
  54. Wang W, Zhao J, Han Q, Wang G, Yang G, Anthony J, Liu J, Gaffney BL, Jones RA (2009) Modulation of RNA metal binding sites by flanking bases: 15N NMR evaluation of GC, tandem GU, and tandem GA sites. Nucleosides Nucleotides Nucleic Acids 28:424–434CrossRefGoogle Scholar
  55. Wijmenga SS, van Buuren BNM (1998) The use of NMR methods for conformational studies of nucleic acids. Prog Nucl Magn Reson Spectrosc 32:287–387CrossRefGoogle Scholar
  56. Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23:1494–1504CrossRefGoogle Scholar
  57. Zhao B, Hansen AL, Zhang Q (2014) Characterizing slow chemical exchange in nucleic acids by carbon CEST and low spin-lock field R1p NMR spectroscopy. J Am Chem Soc 136:20–23CrossRefGoogle Scholar
  58. Ziegeler M, Cevec M, Richter C, Schwalbe H (2012) NMR studies of HAR1 RNA secondary structures reveal conformational dynamics in the human RNA. ChemBioChem 13:2100–2112CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Robbin Schnieders
    • 1
  • Christian Richter
    • 1
  • Sven Warhaut
    • 1
  • Vanessa de Jesus
    • 1
  • Sara Keyhani
    • 1
  • Elke Duchardt-Ferner
    • 2
  • Heiko Keller
    • 2
  • Jens Wöhnert
    • 2
  • Lars T. Kuhn
    • 3
  • Alexander L. Breeze
    • 3
  • Wolfgang Bermel
    • 4
  • Harald Schwalbe
    • 1
  • Boris Fürtig
    • 1
  1. 1.Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtFrankfurtGermany
  2. 2.Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtFrankfurtGermany
  3. 3.Astbury Centre for Structural Molecular Biology, Faculty of Biological SciencesUniversity of LeedsLeedsUK
  4. 4.Bruker BioSpin GmbHRheinstettenGermany

Personalised recommendations