An enhanced sensitivity methyl 1H triple-quantum pulse scheme for measuring diffusion constants of macromolecules

Abstract

We present a pulse scheme that exploits methyl 1H triple-quantum (TQ) coherences for the measurement of diffusion rates of slowly diffusing molecules in solution. It is based on the well-known stimulated echo experiment, with encoding and decoding of TQ coherences. The size of quantifiable diffusion coefficients is thus lowered by an order of magnitude with respect to single-quantum (SQ) approaches. Notably, the sensitivity of the scheme is high, approximately ¾ that of the corresponding single quantum experiment, neglecting relaxation losses, and on the order of a factor of 4 more sensitive than a previously published sequence for AX3 spin systems (Zheng et al. in JMR 198:271–274, 2009) for molecules that are only 13C labeled at the methyl carbon position. Diffusion coefficients measured from TQ- and SQ-based experiments recorded on a range of protein samples are in excellent agreement. We present an application of this technique to the study of phase-separated proteins where protein concentrations in the condensed phase can exceed 400 mg/mL, diffusion coefficients can be as low as ~10−9 cm2s−1 and traditional SQ experiments fail.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahuja P, Sarkar R, Vasos PR, Bodenhausen G (2009) Diffusion coefficients of biomolecules using long-lived spin states diffusion coefficients of biomolecules using long-lived spin states. J Am Chem Soc 131:7498–7499. doi:10.1021/ja902030k

    Article  Google Scholar 

  2. Bouvignies G, Kay LE (2012) A 2D 13C-CEST experiment for studying slowly exchanging protein systems using methyl probes: an application to protein folding. J Biomol NMR 53:303–310. doi:10.1007/s10858-012-9640-7

    Article  Google Scholar 

  3. Brady JP, Farber PJ, Sekhar A, et al (2017) Structural and hydrodynamic properties of an intrinsically disordered region of a germ-cell specific protein upon phase separation. (submitted).

  4. Brangwynne CP, Tompa P, Pappu RV (2015) Polymer physics of intracellular phase transitions. Nat Phys 11:899–904. doi:10.1038/nphys3532

    Article  Google Scholar 

  5. Buevich AV, Baum J (2002) Residue-specific real-time NMR diffusion experiments define the association states of proteins during folding. J Am Chem Soc 124:7156–7162. doi:10.1021/ja012699u

    Article  Google Scholar 

  6. Choy WY, Mulder FA, Crowhurst KA et al (2002) Distribution of molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. J Mol Biol 316:101–112. doi:10.1006/jmbi.2001.5328

    Article  Google Scholar 

  7. Dehner A, Kessler H (2005) Diffusion NMR spectroscopy: folding and aggregation of domains in p53. ChemBioChem 6:1550–1565. doi:10.1002/cbic.200500093

    Article  Google Scholar 

  8. Didenko T, Boelens R, Rüdiger SG (2011) 3D DOSY-TROSY to determine the translational diffusion coefficient of large protein complexes. Protein Eng Des Sel 24:99–103. doi:10.1093/protein/gzq091

    Article  Google Scholar 

  9. Dingley AJ, Mackay JP, Chapman BE et al (1995) Measuring protein self-association using pulsed-field-gradient NMR spectroscopy: application to myosin light chain 2. J Biomol NMR 6:321–328. doi:10.1007/BF00197813

    Article  Google Scholar 

  10. Hajduk PJ, Olejniczak ET, Fesik SW (1997) One-dimensional relaxation- and diffusion-edited NMR methods for screening compounds that bind to macromolecules. J Am Chem Soc 119:12257–12261. doi:10.1021/ja9715962

    Article  Google Scholar 

  11. Horst R, Horwich AL, Wüthrich K (2011) Translational diffusion of macromolecular assemblies measured using transverse-relaxation-optimized pulsed field gradient NMR. J Am Chem Soc 133:16354–16357. doi:10.1021/ja206531c

    Article  Google Scholar 

  12. Huang R, Ripstein ZA, Augustyniak R et al (2016) Unfolding the mechanism of the AAA+ unfoldase VAT by a combined cryo-EM, solution NMR study. Proc Natl Acad Sci USA 113:E4190–E4199. doi:10.1073/pnas.1603980113

    Article  Google Scholar 

  13. Johnson Jr CS (1999) Diffusion ordered nuclear magnetic resonance spectroscopy: principles and applications. Prog Nucl Magn Reson Spectrosc 34:203–256. doi:10.1016/S0079-6565(99)00003-5

    ADS  Article  Google Scholar 

  14. Kay LE, Prestegard JH (1986) An application of pulse-gradient double-quantum spin echoes to diffusion measurements on molecules with scalar-coupled spins. J Magn Reson 67:103–113. doi:10.1016/0022-2364(86)90413-0

    ADS  Google Scholar 

  15. Levitt MH, Freeman R (1979) NMR population inversion using a composite pulse. J Magn Reson 33:473–476. doi:10.1016/0022-2364(79)90265-8

    ADS  Google Scholar 

  16. Martin JF, Selwyn LS, Vold RR, Vold RL (1982) The determination of translational diffusion constants in liquid crystals from pulsed field gradient double quantum spin echo decays. J Chem Phys 76:2632–2634. doi:10.1063/1.443243

    ADS  Article  Google Scholar 

  17. Mittermaier A, Kay LE (2001) Χ1 torsion angle dynamics in proteins from dipolar couplings. J Am Chem Soc 123:6892–6903. doi:10.1021/ja010595d

    Article  Google Scholar 

  18. Nott TJ, Petsalaki E, Farber P et al (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57:936–947. doi:10.1016/j.molcel.2015.01.013

    Article  Google Scholar 

  19. Price WS (1998) Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion: part II. Experimental aspects. Concepts Magn Reson 10:197–237. doi:10.1002/(SICI)1099-0534

    Article  Google Scholar 

  20. Price WS, Tsuchiya F, Arata Y (1999) Lysozyme aggregation and solution properties studied using PGSE NMR diffusion measurements. J Am Chem Soc 121:11503–11512. doi:10.1021/ja992265n

    Article  Google Scholar 

  21. Sekhar A, Rosenzweig R, Bouvignies G, Kay LE (2015) Mapping the conformation of a client protein through the Hsp70 functional cycle. Proc Natl Acad Sci USA 112:10395–10400. doi:10.1073/pnas.1508504112

    ADS  Article  Google Scholar 

  22. Sklenar V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for 1H–15N HSQC experiments optimized to retain full sensitivity. J Magn Reson Ser A 102:241–245. doi:10.1006/jmra.1993.1098

    ADS  Article  Google Scholar 

  23. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622. doi:10.1038/nature05512

    Article  Google Scholar 

  24. Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependant field gradient. J Chem Phys 42:288–292. doi:10.1063/1.1695690

    ADS  Article  Google Scholar 

  25. Tanner JE (1970) Use of the stimulated echo in NMR diffusion studies. J Chem Phys 52:2523–2526. doi:10.1063/1.1673336

    ADS  Article  Google Scholar 

  26. Weljie AM, Yamniuk AP, Yoshino H et al (2003) Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins. Protein Sci 12:228–236. doi:10.1110/ps.0226203

    Article  Google Scholar 

  27. Yan J, Kline AD, Mo H et al (2002) Epitope mapping of ligand-receptor interactions by diffusion NMR. J Am Chem Soc 124:9984–9985. doi:10.1021/ja0264347

    Article  Google Scholar 

  28. Yao S, Weber DK, Separovic F, Keizer DW (2014) Measuring translational diffusion coefficients of peptides and proteins by PFG-NMR using band-selective RF pulses. Eur Biophys J 43:331–339. doi:10.1007/s00249-014-0965-x

    Article  Google Scholar 

  29. Zax D, Pines A (1983) Study of anisotropic diffusion of oriented molecules by multiple quantum spin echoes. J Chem Phys 78:6333–6334. doi:10.1063/1.444559

    ADS  Article  Google Scholar 

  30. Zheng G, Torres AM, Price WS (2009) MQ-PGSTE: a new multi-quantum STE-based PGSE NMR sequence. J Magn Reson 198:271–274. doi:10.1016/j.jmr.2009.03.004

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada. L.E.K holds a Canada Research Chair in Biochemistry.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lewis E. Kay.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 336 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, R., Brady, J.P., Sekhar, A. et al. An enhanced sensitivity methyl 1H triple-quantum pulse scheme for measuring diffusion constants of macromolecules. J Biomol NMR 68, 249–255 (2017). https://doi.org/10.1007/s10858-017-0122-9

Download citation

Keywords

  • Diffusion
  • NMR
  • Triple-quantum
  • Methyl groups
  • Ddx4