Skip to main content
Log in

F 1 F 2-selective NMR spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Fourier transform NMR spectroscopy has provided unprecedented insight into the structure, interaction and dynamic motion of proteins and nucleic acids. Conventional biomolecular NMR relies on the acquisition of three-dimensional and four-dimensional (4D) data matrices to establish correlations between chemical shifts in the frequency domains F 1, F 2, F 3 and F 1, F 2, F 3, F 4 respectively. While rich in information, these datasets require a substantial amount of acquisition time, are visually highly unintuitive, require expert knowledge to process, and sample dark and bright regions of the frequency domains equally. Here, we present an alternative approach to obtain multidimensional chemical shift correlations for biomolecules. This strategy focuses on one narrow frequency range, F 1 F 2, at a time and records the resulting F 3 F 4 correlation spectrum by two-dimensional NMR. As a result, only regions of the frequency domain that contain signals in F 1 F 2 (“bright regions”) are sampled. F 1 F 2 selection is achieved by Hartmann–Hahn cross-polarization using weak radio frequency fields. This approach reveals information equivalent to that of a conventional 4D experiment, while the dimensional reduction may shorten the total acquisition time and simplifies spectral processing, interpretation and comparative analysis. Potential applicability of the F 1 F 2-selective approach is illustrated by de novo assignment, structural and dynamics studies of ubiquitin and fatty-acid binding protein 4 (FABP4). Further extension of this concept may spawn new selective NMR experiments to aid studies of site-specific structural dynamics, protein–protein interactions and allosteric modulation of protein structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CP:

Cross-polarization

FID:

Free induction decay

FT:

Fourier transform

HSQC:

Heteronuclear single-quantum coherence

NOE:

Nuclear overhauser effect

NUS:

Non-uniform sampling

PEP:

Preservation of equivalent pathways

References

  • Adams PD, Afonine PV, Bunkóczi G et al (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Cryst D 66:213–221

    Article  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ (1995) Protein NMR spectroscopy: principles and practice. Academic Press, New York

    Google Scholar 

  • Chiarparin E, Pelupessy P, Bodenhausen G (1998) Selective cross-polarization in solution state NMR. Mol Phys 95:759–767

    Article  ADS  Google Scholar 

  • De Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nature Protoc 5:883–897

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Freeman R, Kupce E (2008) Fast multidimensional NMR by hadamard spectroscopy. eMagRes, pp 1–11. http://onlinelibrary.wiley.com/doi/10.1002/9780470034590.emrstm1035/full

  • Güntert P (2004) Automated NMR structure calculation with CYANA. Protein NMR techniques. Humana Press, New Jersey

    Google Scholar 

  • Gutmanas A et al (2015) NMR exchange format: a unified and open standard for representation of NMR restraint data. Nat Struct Mol Biol 22:433–434

    Article  Google Scholar 

  • Hansen AL, Al-Hashimi HM (2007) Dynamics of large elongated RNA by NMR carbon relaxation. J Am Chem Soc 129:16072–16082

    Article  Google Scholar 

  • Hansen AL, Nikolova EN, Casiano-Negroni A, Al-Hashimi HM (2009) Extending the range of microsecond-to-millisecond chemical exchange detected in labeled and unlabeled nucleic acids by selective carbon R1ρ NMR spectroscopy. J Am Chem Soc 131:3818–3819

    Article  Google Scholar 

  • Hartmann S, Hahn E (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042

    Article  ADS  MATH  Google Scholar 

  • Hiller S, Ibraghimov I, Wagner G, Orekhov VY (2009) Coupled decomposition of four-dimensional NOESY spectra. J Am Chem Soc 131:12970–12978

    Article  Google Scholar 

  • Hyberts SG, Milbradt AG, Wagner AB, Arthanari H, Wagner G (2012) Application of iterative soft thresholding for fast reconstruction of NMR data non-uniformly sampled with multidimensional Poisson Gap scheduling. J Biomol NMR 52:315–327

    Article  Google Scholar 

  • Ikegami T, Sato S, Wälchli M, Kyogoku Y, Shirakawa M (1997) An efficient HN (CA) NH pulse scheme for triple-resonance 4D correlation of sequential amide protons and nitrogens-15 in deuterated proteins. J Magn Reson 124:214–217

    Article  ADS  Google Scholar 

  • Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed 50:5556–5559

    Article  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125:1385–1393

    Article  Google Scholar 

  • Korzhnev DM, Orekhov VY, Kay LE (2005) Off-resonance R1ρ NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. J Am Chem Soc 127:713–721

    Article  Google Scholar 

  • Kupče E, Freeman R (2003a) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125:13958–13959

    Article  Google Scholar 

  • Kupče E, Freeman R (2003b) Fast multi-dimensional Hadamard spectroscopy. J Magn Reson 163:56–63

    Article  ADS  Google Scholar 

  • Lange OF et al (2012) Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci USA 109:10873–10878

    Article  ADS  Google Scholar 

  • Massi F, Johnson E, Wang C, Rance M, Palmer AG (2004) NMR R rotating-frame relaxation with weak radio frequency fields. J Am Chem Soc 126:2247–2256

    Article  Google Scholar 

  • Massi F, Grey MJ, Palmer AG (2005) Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR R relaxation experiments. Protein Sci 14:735–742

    Article  Google Scholar 

  • Matsuki Y, Eddy MT, Herzfeld J (2009) Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J Am Chem Soc 131:4648–4656

    Article  Google Scholar 

  • Miloushev VZ, Palmer AG (2005) R relaxation for two-site chemical exchange: General approximations and some exact solutions. J Magn Reson 177:221–227

    Article  ADS  Google Scholar 

  • Morimoto D, Walinda E, Fukada, H, Sugase K, Shirakawa M (2016) Ubiquitylation directly induces fold destabilization of proteins. Sci Rep 6:39453

    Article  ADS  Google Scholar 

  • Orekhov VY, Jaravine VA (2011) Analysis of non-uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Reson Spectrosc 59:271–292

    Article  Google Scholar 

  • Palmer AG, Cavanagh J, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 93:151–170

    ADS  Google Scholar 

  • Palmer AG, Kroenke CC, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  Google Scholar 

  • Pelupessy P, Chiarparin E (2000) Hartmann–Hahn polarization transfer in liquids: an ideal tool for selective experiments. Concepts Magn Reson 12:103–124

    Article  Google Scholar 

  • Pelupessy P, Chiarparin E, Bodenhausen G (1999) Excitation of selected proton signals in NMR of isotopically labeled macromolecules. J Magn Reson 138:178–181

    Article  ADS  Google Scholar 

  • Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  Google Scholar 

  • Saio T, Guan X, Rossi P, Economou A, Kalodimos CG (2014) Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:12504941–125049411

    Article  Google Scholar 

  • Sattler M, Schleucher J, Griesinger C (1999) Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution. Prog Nucl Magn Reson Spectrosc 34:93–158

    Article  Google Scholar 

  • Schmidt E, Güntert P (2012) A new algorithm for reliable and general NMR resonance assignment. J Am Chem Soc 134:12817–12829

    Article  Google Scholar 

  • Schubert M, Smalla M, Schmieder P, Oschkinat H (1999) MUSIC in triple-resonance experiments: amino acid type-selective 1H–15N correlations. J Magn Reson 141:34–43

    Article  ADS  Google Scholar 

  • Schubert M, Ball LJ, Oschkinat H, Schmieder P (2000) Bridging the gap: a set of selective 1H–15N-correlations to link sequential neighbors of prolines. J Biomol NMR 17:331–335

    Article  Google Scholar 

  • Schubert M, Oschkinat H, Schmieder P (2001a) Amino acid type-selective backbone 1H–15N-correlations for Arg and Lys. J Biomol NMR 20:379–384

    Article  Google Scholar 

  • Schubert M, Oschkinat H, Schmieder P (2001b) MUSIC and aromatic residues: amino acid type-selective 1H–15N correlations. J Magn Reson 153:186–192

    Article  ADS  Google Scholar 

  • Schubert M, Oschkinat H, Schmieder P (2001c) MUSIC, selective pulses, and tuned delays: amino acid type-selective 1H–15N correlations, II. J Magn Reson 148:61–72

    Article  ADS  Google Scholar 

  • Schubert M, Labudde D, Leitner D, Oschkinat H, Schmieder P (2005) A modified strategy for sequence specific assignment of protein NMR spectra based on amino acid type selective experiments. J Biomol NMR 31:115–128

    Article  Google Scholar 

  • Shi J, Pelton GP, Cho HS, Wemmer DE (2004) Protein signal assignments using specific labeling and cell-free synthesis. J Biomol NMR 28:235–247

    Article  Google Scholar 

  • Sugase K, Konuma T, Lansing JC, Wright PE (2013) Fast and accurate fitting of relaxation dispersion data using the flexible software package GLOVE. J Biomol NMR 56:275–283

    Article  Google Scholar 

  • Takahashi H, Nakanishi T, Kami K, Arata Y, Shimada I (2000) A novel NMR method for determining the interfaces of large protein–protein complexes. Nat Struct Mol Biol 7:220–223

    Article  Google Scholar 

  • Vögeli B et al (2009) Exact distances and internal dynamics of perdeuterated ubiquitin from NOE buildups. J Am Chem Soc 131:17215–17225

    Article  Google Scholar 

  • Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  Google Scholar 

  • Walinda E, Morimoto D, Sugase K, Konuma T, Tochio H, Shirakawa M (2014) Solution structure of the ubiquitin-associated (UBA) domain of human autophagy receptor NBR1 and its interaction with ubiquitin and polyubiquitin. J Biol Chem 289:13890–13902

    Article  Google Scholar 

  • Walinda E, Morimoto D, Nishizawa M, Shirakawa M, Sugase K (2016) Efficient identification and analysis of chemical exchange in biomolecules by R relaxation dispersion with amaterasu. Bioinformatics 32:2539

    Article  Google Scholar 

  • Walinda E, Morimoto D, Shirakawa M, Sugase K (2017) Practical considerations for investigation of protein conformational dynamics by 15N R relaxation dispersion. J Biomol NMR. doi:10.1007/s10858-017-0097-6

    Google Scholar 

  • Weisemann R, Rüterjans H, Bermel W (1993) 3D triple-resonance NMR techniques for the sequential assignment of NH and 15N resonances in 15N-and 13C-labelled proteins. J Biomol NMR 3:113–120

    Article  Google Scholar 

  • Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16

    Article  Google Scholar 

  • Zawadzka-Kazimierczuk A, Kazimierczuk K, Koźmiński W (2010) A set of 4D NMR experiments of enhanced resolution for easy resonance assignment in proteins. J Magn Reson 202:109–116

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sugase.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 880 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walinda, E., Morimoto, D., Shirakawa, M. et al. F 1 F 2-selective NMR spectroscopy. J Biomol NMR 68, 41–52 (2017). https://doi.org/10.1007/s10858-017-0113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-017-0113-x

Keywords

Navigation