Journal of Biomolecular NMR

, Volume 67, Issue 4, pp 309–319 | Cite as

NMR line shape analysis of a multi-state ligand binding mechanism in chitosanase

  • Shoko Shinya
  • Mariana G. Ghinet
  • Ryszard Brzezinski
  • Kyoko Furuita
  • Chojiro Kojima
  • Sneha Shah
  • Evgenii L. Kovrigin
  • Tamo Fukamizo


Chitosan interaction with chitosanase was examined through analysis of spectral line shapes in the NMR HSQC titration experiments. We established that the substrate, chitosan hexamer, binds to the enzyme through the three-state induced-fit mechanism with fast formation of the encounter complex followed by slow isomerization of the bound-state into the final conformation. Mapping of the chemical shift perturbations in two sequential steps of the mechanism highlighted involvement of the substrate-binding subsites and the hinge region in the binding reaction. Equilibrium parameters of the three-state model agreed with the overall thermodynamic dissociation constant determined by ITC. This study presented the first kinetic evidence of the induced-fit mechanism in the glycoside hydrolases.


Line shape analysis NMR Chitosanase Chitosan Induced fit Exchange regime HSQC titration IDAP TITAN 



This work was supported by “Strategic Project to Support the Formation of Research Bases at Private Universities: Matching Fund Subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology), 2011–2015 (S1101035) and partially supported by the Platform Project for Supporting in Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science from Japan Agency for Medical Research and development (AMED) to TF. Work at Université de Sherbrooke was sustained by a Discovery Grant from the Natural Science and Engineering Research Council of Canada to RB. ELK acknowledges Committee on Research (COR) Summer Faculty Fellowship 2012 from Marquette University. SS was supported by a Research Fellowship for Young Scientists from Japan Society for the Promotion of Science (25-3639).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10858_2017_109_MOESM1_ESM.docx (3.4 mb)
Supplementary material 1 (DOCX 3496 KB)
10858_2017_109_MOESM2_ESM.mpg (336 kb)
Supplementary material 2 (MPG 335 KB)


  1. Agafonov RV, Wilson C, Otten R, Buosi V, Kern D (2014) Energetic dissection of Gleevec’s selectivity toward human tyrosine kinases. Nat Struct Mol Biol 21:848–853. doi: 10.1038/nsmb.2891 CrossRefGoogle Scholar
  2. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki BF (eds) Second International Symposium on Information Theory. Academiai Kiado, Budapest, pp 267–281Google Scholar
  3. Akaike H (1981) Likelihood of a model and information criteria. J Econometrics 16:3–14CrossRefMATHGoogle Scholar
  4. Boucher I, Fukamizo T, Honda Y, Willick GE, Neugebauer WA, Brzezinski R (1995) Site-directed mutagenesis of evolutionary conserved carboxylic amino acids in the chitosanase from streptomyces sp. N174 reveals two residues essential for catalysis. J Biol Chem 270:31077–31082CrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  6. Davies GJ, Wilson KS, Henrissat B (1997) Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321(Pt 2):557–559CrossRefGoogle Scholar
  7. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  8. Dubeau MP, Ghinet MG, Jacques PE, Clermont N, Beaulieu C, Brzezinski R (2009) Cytosine deaminase as a negative selection marker for gene disruption and replacement in the genus Streptomyces and other actinobacteria. Appl Environ Microbiol 75:1211–1214. doi: 10.1128/AEM.02139-08 CrossRefGoogle Scholar
  9. Fukamizo T, Brzezinski R (1997) Chitosanase from Streptomyces sp. strain N174: a comparative review of its structure and function. Biochem Cell Biol 75:687–696CrossRefGoogle Scholar
  10. Fukamizo T, Ohkawa T, Ikeda Y, Goto S (1994) Specificity of chitosanase from Bacillus pumilus. Biochim Biophys Acta 1205:183–188CrossRefGoogle Scholar
  11. Fukamizo T, Honda Y, Goto S, Boucher I, Brzezinski R (1995) Reaction mechanism of chitosanase from Streptomyces sp. N174. Biochem J 311(Pt 2):377–383CrossRefGoogle Scholar
  12. Ghinet MG, Roy S, Poulin-Laprade D, Lacombe-Harvey ME, Morosoli R, Brzezinski R (2010) Chitosanase from Streptomyces coelicolor A3(2): biochemical properties and role in protection against antibacterial effect of chitosan. Biochem Cell Biol 88:907–916. doi: 10.1139/O10-109 CrossRefGoogle Scholar
  13. Goddard TD, Kneller DG (1997) SPARKY 3; University of California, San Francisco
  14. Grzesiek S, Stahl SJ, Wingfield PT, Bax A (1996) The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR. BioChemistry 35:10256–10261. doi: 10.1021/bi9611164 CrossRefGoogle Scholar
  15. Günther UL, Schaffhausen B (2002) NMRKIN: Simulating line shapes from two-dimensional spectra of proteins upon ligand binding. J Biomol NMR 22:201–209CrossRefGoogle Scholar
  16. Kaplan JI, Fraenkel G (1980) NMR of chemically exchanging systems. Academic Press, CambridgeGoogle Scholar
  17. Katsumi T, Lacombe-Harvey ME, Tremblay H, Brzezinski R, Fukamizo T (2005) Role of acidic amino acid residues in chitooligosaccharide-binding to Streptomyces sp. N174 chitosanase. Biochem Biophys Res Commun 338:1839–1844. doi: 10.1016/j.bbrc.2005.10.157 CrossRefGoogle Scholar
  18. Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 213:423–441. doi: 10.1016/j.jmr.2011.09.004 ADSCrossRefGoogle Scholar
  19. Kern D, Kern G, Scherer G, Fischer G, Drakenberg T (1995) Kinetic analysis of cyclophilin-catalyzed prolyl cis/trans isomerization by dynamic NMR spectroscopy. BioChemistry 34:13594–13602CrossRefGoogle Scholar
  20. Kohen A (2003) Kinetic isotope effects as probes for hydrogen tunneling, coupled motion and dynamics contributions to enzyme catalysis. Prog Reac Kinet Mec 28:119–156CrossRefGoogle Scholar
  21. Kovrigin EL (2012) NMR line shapes and multi-state binding equilibria. J Biomol NMR 53:257–270. doi: 10.1007/s10858-012-9636-3 CrossRefGoogle Scholar
  22. Kovrigin EL, Loria JP (2006) Characterization of the transition state of functional enzyme dynamics. JACS 128:7724–7725CrossRefGoogle Scholar
  23. Krantz BA, Moran LB, Kentsis A, Sosnick TR (2000) D/H amide kinetic isotope effects reveal when hydrogen bonds form during protein folding. Nat Struct Biol 7:62–71CrossRefGoogle Scholar
  24. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685ADSCrossRefGoogle Scholar
  25. Lyu QQ et al. (2015) Structural and biochemical insights into the degradation mechanism of chitosan by chitosanase OU01. Biochim Biophys Acta 1850:1953–1961 doi: 10.1016/j.bbagen.2015.06.011 CrossRefGoogle Scholar
  26. Marcotte EM, Monzingo AF, Ernst SR, Brzezinski R, Robertus JD (1996) X-ray structure of an anti-fungal chitosanase from Streptomyces N174. Nat Struct Biol 3:155–162CrossRefGoogle Scholar
  27. Mittag T, Schaffhausen B, Gunther UL (2003) Direct observation of protein-ligand interaction kinetics. BioChemistry 42:11128–11136CrossRefGoogle Scholar
  28. Mittag T, Franzoni L, Cavazzini D, Schaffhausen B, Rossi GL, Gunther UL (2006) Retinol modulates site-specific mobility of apo-cellular retinol-binding protein to promote ligand binding. J Am Chem Soc 128:9844–9848CrossRefGoogle Scholar
  29. Monaghan RL, Eveleigh DE, Tewari RP, Reese ET (1973) Chitosanase, a novel enzyme. Nature 245:78–80Google Scholar
  30. Monzingo AF, Marcotte EM, Hart PJ, Robertus JD (1996) Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nat Struct Biol 3:133–140CrossRefGoogle Scholar
  31. Motulsky H, Christopoulos A (2004) Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. 1st edn. Oxford University Press, USA.
  32. Ohnuma T, Umemoto N, Kondo K, Numata T, Fukamizo T (2013) Complete subsite mapping of a “loopful” GH19 chitinase from rye seeds based on its crystal structure. FEBS Lett 587:2691–2697. doi: 10.1016/j.febslet.2013.07.008 CrossRefGoogle Scholar
  33. Page N, Kluepfel D, Shareck F, Morosoli R (1996) Effect of signal peptide alterations and replacement on export of xylanase A in Streptomyces lividans. Appl Environ Microbiol 62:109–114Google Scholar
  34. Pareek N, Vivekanand V, Agarwal P, Saroj S, Singh RP (2013) Bioconversion to chitosan: a two stage process employing chitin deacetylase from Penicillium oxalicum SAEM-51. Carbohydr Polym 96:417–425. doi: 10.1016/j.carbpol.2013.04.005 CrossRefGoogle Scholar
  35. Raafat D, von Bargen K, Haas A, Sahl H-G (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl Environ Microbiol 74:3764–3773 doi: 10.1128/aem.00453-08 CrossRefGoogle Scholar
  36. Rao BDN (1989) Nuclear magnetic resonance line-shape analysis and determination of exchange rates. Methods Enzymol 176:279–311CrossRefGoogle Scholar
  37. Rhoades J et al (2008) Oligosaccharide-mediated inhibition of the adhesion of pathogenic Escherichia coli strains to human gut epithelial cells in vitro. J Food Prot 71:2272–2277CrossRefGoogle Scholar
  38. Sanssouci E, Lerat S, Grondin G, Shareck F, Beaulieu C (2011) tdd8: a TerD domain-encoding gene involved in Streptomyces coelicolor differentiation. Antonie Van Leeuwenhoek 100:385–398. doi: 10.1007/s10482-011-9593-y CrossRefGoogle Scholar
  39. Suhre K, Sanejouand YH (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucl Acid Res 32:W610–614 doi: 10.1093/nar/gkh368 CrossRefGoogle Scholar
  40. Taylor JR (1997) An introduction to error analysis. 2nd edn. University Science Books, CaliforniaGoogle Scholar
  41. Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905–1908ADSCrossRefGoogle Scholar
  42. Tremblay H, Yamaguchi T, Fukamizo T, Brzezinski R (2001) Mechanism of chitosanase-oligosaccharide interaction: subsite structure of Streptomyces sp. N174 chitosanase the role of Asp57 carboxylate. J Biochem 130:679–686CrossRefGoogle Scholar
  43. Wang Y, Zhou P, Yu J, Pan X, Wang P, Lan W, Tao S (2007) Antimicrobial effect of chitooligosaccharides produced by chitosanase from Pseudomonas CUY8. Asia Pac J Clin Nutr 16(Suppl 1):174–177Google Scholar
  44. Waudby CA, Ramos A, Cabrita LD, Christodoulou J (2016) Two-dimensional NMR lineshape analysis. Sci Rep 6:8 doi: 10.1038/srep24826 CrossRefGoogle Scholar
  45. Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5:67–81CrossRefGoogle Scholar
  46. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13:1133–1174. doi: 10.3390/md13031133 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Shoko Shinya
    • 1
    • 3
  • Mariana G. Ghinet
    • 2
    • 5
  • Ryszard Brzezinski
    • 2
  • Kyoko Furuita
    • 3
  • Chojiro Kojima
    • 3
  • Sneha Shah
    • 4
  • Evgenii L. Kovrigin
    • 4
  • Tamo Fukamizo
    • 1
  1. 1.Department of Advanced BioscienceKindai UniversityNaraJapan
  2. 2.Département de Biologie, Faculté des SciencesUniversité de SherbrookeSherbrookeCanada
  3. 3.Institute for Protein ResearchOsaka UniversitySuitaJapan
  4. 4.Department of ChemistryMarquette UniversityMilwaukeeUSA
  5. 5.Département de Pharmacologie, Faculté de Médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeCanada

Personalised recommendations