Journal of Biomolecular NMR

, Volume 66, Issue 4, pp 233–242 | Cite as

Accelerating proton spin diffusion in perdeuterated proteins at 100 kHz MAS

  • Johannes J. Wittmann
  • Vipin Agarwal
  • Johannes Hellwagner
  • Alons Lends
  • Riccardo Cadalbert
  • Beat H. Meier
  • Matthias Ernst
Article

Abstract

Fast magic-angle spinning (>60 kHz) has many advantages but makes spin-diffusion-type proton–proton long-range polarization transfer inefficient and highly dependent on chemical-shift offset. Using 100%-HN-[2H,13C,15N]-ubiquitin as a model substance, we quantify the influence of the chemical-shift difference on the spin diffusion between proton spins and compare two experiments which lead to an improved chemical-shift compensation of the transfer: rotating-frame spin diffusion and a new experiment, reverse amplitude-modulated MIRROR. Both approaches enable broadband spin diffusion, but the application of the first variant is limited due to fast spin relaxation in the rotating frame. The reverse MIRROR experiment, in contrast, is a promising candidate for the determination of structurally relevant distance restraints. The applied tailored rf-irradiation schemes allow full control over the range of recoupled chemical shifts and efficiently drive spin diffusion. Here, the relevant relaxation time is the larger longitudinal relaxation time, which leads to a higher signal-to-noise ratio in the spectra.

Keywords

Fast MAS Protein structure determination Spin diffusion 

Supplementary material

10858_2016_71_MOESM1_ESM.pdf (3.6 mb)
Supplementary material 1 (PDF 3644 kb)

References

  1. Agarwal V, Tuherm T, Reinhold A et al (2013) Amplitude-modulated low-power decoupling sequences for fast magic-angle spinning NMR. Chem Phys Lett 583:1–7. doi:10.1016/j.cplett.2013.07.073 ADSCrossRefGoogle Scholar
  2. Agarwal V, Penzel S, Szekely K et al (2014) De Novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Ed 53:12253–12256. doi:10.1002/anie.201405730 CrossRefGoogle Scholar
  3. Akbey Ü, Lange S, Trent Franks W et al (2010) Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. J Biomol NMR 46:67–73. doi:10.1007/s10858-009-9369-0 CrossRefGoogle Scholar
  4. Andrew ER, Bradbury A, Eades RG (1958) Nuclear magnetic resonance spectra from a crystal rotated at high speed. Nature 182:1659ADSCrossRefGoogle Scholar
  5. Bayro MJ, Huber M, Ramachandran R et al (2009) Dipolar truncation in magic-angle spinning NMR recoupling experiments. J Chem Phys 130:114506. doi:10.1063/1.3089370 ADSCrossRefGoogle Scholar
  6. Bennett A, Rienstra C, Griffiths J et al (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108:9463ADSCrossRefGoogle Scholar
  7. Bertini I, Emsley L, Felli IC et al (2011) High-resolution and sensitivity through-bond correlations in ultra-fast magic angle spinning (MAS) solid-state NMR. Chem Sci 2:345–348. doi:10.1039/c0sc00397b CrossRefGoogle Scholar
  8. Böckmann A, Gardiennet C, Verel R et al (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327. doi:10.1007/s10858-009-9374-3 CrossRefGoogle Scholar
  9. Böckmann A, Ernst M, Meier BH (2015) Spinning proteins, the faster, the better? J Magn Reson 253:71–79. doi:10.1016/j.jmr.2015.01.012 ADSCrossRefGoogle Scholar
  10. Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh resolution in proton solid-state nmr spectroscopy at high levels of deuteration. Angew Chem Int Ed 45:3878–3881. doi:10.1002/anie.200600328 CrossRefGoogle Scholar
  11. De Paëpe G, Lewandowski JR, Loquet A et al (2008) Proton assisted recoupling and protein structure determination. J Chem Phys 129:245101. doi:10.1063/1.3036928 ADSCrossRefGoogle Scholar
  12. Demers J-P, Chevelkov V, Lange A (2011) Progress in correlation spectroscopy at ultra-fast magic-angle spinning: basic building blocks and complex experiments for the study of protein structure and dynamics. Solid State Nucl Magn Reson 40:101–113. doi:10.1016/j.ssnmr.2011.07.002 CrossRefGoogle Scholar
  13. Deschamps M (2014) Ultrafast magic angle spinning nuclear magnetic resonance. Annu Rep NMR Spectrosc 81:109–144. doi:10.1016/B978-0-12-800185-1.00003-6 CrossRefGoogle Scholar
  14. Duma L, Abergel D, Ferrage F et al (2008) Broadband dipolar recoupling for magnetization transfer in solid-state NMR correlation spectroscopy. ChemPhysChem 9:1104–1106. doi:10.1002/cphc.200800053 CrossRefGoogle Scholar
  15. Ernst M, Meier MA, Tuherm T et al (2004) Low-power high-resolution solid-state nmr of peptides and proteins. J Am Chem Soc 126:4764–4765. doi:10.1021/ja0494510 CrossRefGoogle Scholar
  16. Ernst M, Samoson A, Meier BH (2005) Decoupling and recoupling using continuous-wave irradiation in magic-angle-spinning solid-state NMR: a unified description using bimodal Floquet theory. J Chem Phys 123:64102. doi:10.1063/1.1944291 CrossRefGoogle Scholar
  17. Grommek A, Meier BH, Ernst M (2006) Distance information from proton-driven spin diffusion under MAS. Chem Phys Lett 427:404–409. doi:10.1016/j.cplett.2006.07.005 ADSCrossRefGoogle Scholar
  18. Hohwy M, Rienstra CM, Griffin RG (2002) Band-selective homonuclear dipolar recoupling in rotating solids. J Chem Phys 117:4973. doi:10.1063/1.1488136 ADSCrossRefGoogle Scholar
  19. Hou G, Yan S, Sun S et al (2011) Spin diffusion driven by R-symmetry sequences: applications to homonuclear correlation spectroscopy in MAS NMR of biological and organic solids. J Am Chem Soc 133:3943–3953. doi:10.1021/ja108650x CrossRefGoogle Scholar
  20. Hou G, Yan S, Trébosc J et al (2013) Broadband homonuclear correlation spectroscopy driven by combined R2(n)(v) sequences under fast magic angle spinning for NMR structural analysis of organic and biological solids. J Magn Reson 232:18–30. doi:10.1016/j.jmr.2013.04.009 ADSCrossRefGoogle Scholar
  21. Hu B, Lafon O, Trébosc J et al (2011) Broad-band homo-nuclear correlations assisted by 1H irradiation for bio-molecules in very high magnetic field at fast and ultra-fast MAS frequencies. J Magn Reson 212:320–329. doi:10.1016/j.jmr.2011.07.011 ADSCrossRefGoogle Scholar
  22. Huang KY, Amodeo GA, Tong L, McDermott A (2011) The structure of human ubiquitin in 2-methyl-2,4-pentanediol: a new conformational switch. Protein Sci 20:630–639. doi:10.1002/pro.584 CrossRefGoogle Scholar
  23. Huber M, Hiller S, Schanda P et al (2011) A proton-detected 4D solid-state NMR experiment for protein structure determination. ChemPhysChem 12:915–918. doi:10.1002/cphc.201100062 CrossRefGoogle Scholar
  24. Igumenova TI, McDermott AE, Zilm KW et al (2004) Assignments of carbon NMR resonances for microcrystalline ubiquitin. J Am Chem Soc 126:6720–6727. doi:10.1021/ja030547o CrossRefGoogle Scholar
  25. Ishii Y (2001) [sup 13]C–[sup 13]C dipolar recoupling under very fast magic angle spinning in solid-state nuclear magnetic resonance: applications to distance measurements, spectral assignments, and high-throughput secondary-structure determination. J Chem Phys 114:8473. doi:10.1063/1.1359445 ADSCrossRefGoogle Scholar
  26. Kubo A, McDowell CA (1988) Spectral spin diffusion in polycrystalline solids under magic-angle spinning. J Chem Soc, Faraday Trans 1(84):3713. doi:10.1039/f19888403713 CrossRefGoogle Scholar
  27. Kümmerlen J, van Beek JD, Vollrath F, Meier BH (1996) Local structure in spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic resonance. Macromolecules 29:2920–2928. doi:10.1021/ma951098i ADSCrossRefGoogle Scholar
  28. Ladizhansky V (2009) Homonuclear dipolar recoupling techniques for structure determination in uniformly 13C-labeled proteins. Solid State Nucl Magn Reson 36:119–128. doi:10.1016/j.ssnmr.2009.07.003 CrossRefGoogle Scholar
  29. Lange A, Luca S, Baldus M (2002) Structural constraints from proton-mediated rare-spin correlation spectroscopy in rotating solids †. J Am Chem Soc 124:9704–9705. doi:10.1021/ja026691b CrossRefGoogle Scholar
  30. Lange A, Scholz I, Manolikas T et al (2009) Low-power cross polarization in fast magic-angle spinning NMR experiments. Chem Phys Lett 468:100–105. doi:10.1016/j.cplett.2008.11.089 ADSCrossRefGoogle Scholar
  31. Lewandowski JR, Dumez JN, Akbey Ü et al (2011) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2:2205–2211. doi:10.1021/jz200844n CrossRefGoogle Scholar
  32. Linser R, Bardiaux B, Higman V et al (2011) Structure calculation from unambiguous long-range amide and methyl 1H-1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. J Am Chem Soc 133:5905–5912. doi:10.1021/ja110222h CrossRefGoogle Scholar
  33. Lowe IJ (1959) Free induction decays of rotating solids. Phys Rev Lett 2:285–287. doi:10.1103/PhysRevLett.2.285 ADSCrossRefGoogle Scholar
  34. Maricq MM, Waugh JS (1979) NMR in rotating solids. J Chem Phys 70:3300. doi:10.1063/1.437915 ADSCrossRefGoogle Scholar
  35. Meier BH (1994) Polarization transfer and spin diffusion in solid-state NMR. Adv Magn Opt Reson 18:1Google Scholar
  36. Nishiyama Y, Lu X, Trébosc J et al (2012) Practical choice of 1H–1H decoupling schemes in through-bond 1H–{X} HMQC experiments at ultra-fast MAS. J Magn Reson 214:151–158. doi:10.1016/j.jmr.2011.10.014 ADSCrossRefGoogle Scholar
  37. Parthasarathy S, Nishiyama Y, Ishii Y (2013) Sensitivity and resolution enhanced solid-state nmr for paramagnetic systems and biomolecules under very fast magic angle spinning. Acc Chem Res 46:2127–2135. doi:10.1021/ar4000482 CrossRefGoogle Scholar
  38. Penzel S, Smith AA, Agarwal V et al (2015) Protein resonance assignment at MAS frequencies approaching 100 kHz: a quantitative comparison of J-coupling and dipolar-coupling-based transfer methods. J Biomol NMR 63:165–186. doi:10.1007/s10858-015-9975-y CrossRefGoogle Scholar
  39. Reif B (2012) Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: implications for structure and dynamics. J Magn Reson 216:1–12. doi:10.1016/j.jmr.2011.12.017 ADSCrossRefGoogle Scholar
  40. Robyr P, Meier BH, Ernst RR (1989) Radio-frequency-driven nuclear spin diffusion in solids. Chem Phys Lett 162:417–423. doi:10.1016/0009-2614(89)87001-0 ADSCrossRefGoogle Scholar
  41. Robyr P, Meier BH, Ernst RR (1991) Tensor correlation by 2D spin-diffusion powder NMR spectroscopy: determination of the asymmetry of the hydrogen bond potential in benzoic acid. Chem Phys Lett 187:471. doi:10.1016/0009-2614(91)80285-6 ADSCrossRefGoogle Scholar
  42. Scholz I, Huber M, Manolikas T et al (2008) MIRROR recoupling and its application to spin diffusion under fast magic-angle spinning. Chem Phys Lett 460:278–283. doi:10.1016/j.cplett.2008.05.058 ADSCrossRefGoogle Scholar
  43. Scholz I, van Beek JD, Ernst M (2010) Operator-based Floquet theory in solid-state NMR. Solid State Nucl Magn Reson 37:39–59. doi:10.1016/j.ssnmr.2010.04.003 CrossRefGoogle Scholar
  44. Senker J, Seyfarth L, Voll J (2004) Determination of rotational symmetry elements in NMR crystallography. Solid State Sci 6:1039–1052. doi:10.1016/j.solidstatesciences.2004.07.001 ADSCrossRefGoogle Scholar
  45. Szeverenyi NM, Sullivan MJ, Maciel GE (1982) Observation of spin exchange by two-dimensional fourier transform 13C cross polarization-magic-angle spinning. J Magn Reson 47:462–475. doi:10.1016/0022-2364(82)90213-X ADSGoogle Scholar
  46. Takegoshi K, Nakamura S, Terao T (2001) C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637ADSCrossRefGoogle Scholar
  47. Takegoshi K, Nakamura S, Terao T (2003) 13C–1H dipolar-driven 13C–13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids. J Chem Phys 118:2325. doi:10.1063/1.1534105 ADSCrossRefGoogle Scholar
  48. Teymoori G, Pahari B, Stevensson B, Edén M (2012) Low-power broadband homonuclear dipolar recoupling without decoupling: double-quantum 13C NMR correlations at very fast magic-angle spinning. Chem Phys Lett 547:103–109. doi:10.1016/j.cplett.2012.07.053 ADSCrossRefGoogle Scholar
  49. Verel R, Ernst M, Meier BH (2001) Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. J Magn Reson 150:81–99. doi:10.1006/jmre.2001.2310 ADSCrossRefGoogle Scholar
  50. Veshtort M, Griffin RG (2011) Proton-driven spin diffusion in rotating solids via reversible and irreversible quantum dynamics. J Chem Phys 135:134509. doi:10.1063/1.3635374 ADSCrossRefGoogle Scholar
  51. Weingarth M, Bodenhausen G, Tekely P (2009) Broadband carbon-13 correlation spectra of microcrystalline proteins in very high magnetic fields. J Am Chem Soc 131:13937–13939. doi:10.1021/ja9036143 CrossRefGoogle Scholar
  52. Weingarth M, Bodenhausen G, Tekely P (2010) Broadband magnetization transfer using moderate radio-frequency fields for NMR with very high static fields and spinning speeds. Chem Phys Lett 488:10–16. doi:10.1016/j.cplett.2010.01.072 ADSCrossRefGoogle Scholar
  53. Wittmann JJ, Hendriks L, Meier BH, Ernst M (2014) Controlling spin diffusion by tailored rf-irradiation schemes. Chem Phys Lett 608:60–67. doi:10.1016/j.cplett.2014.05.057 ADSCrossRefGoogle Scholar
  54. Zhou DH, Shah G, Cormos M et al (2007) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129:11791–11801. doi:10.1021/ja073462m CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Physical ChemistryETH ZurichZurichSwitzerland
  2. 2.TIFR Center for Interdisciplinary ScienceHyderabadIndia

Personalised recommendations