Characterization of fibril dynamics on three timescales by solid-state NMR

A Correction to this article was published on 08 March 2018

This article has been updated

Abstract

A multi-timescale analysis of the backbone dynamics of HET-s (218–289) fibrils is described based on multiple site-specific R 1 and R data sets and S 2 measurements via REDOR for most backbone 15N and 13Cα nuclei. 15N and 13Cα data are fitted with motions at three timescales. Slow motion is found, indicating a global fibril motion. We further investigate the effect of 13C–13C transfer in measurement of 13R 1. Finally, we show that it is necessary to go beyond the Redfield approximation for slow motions in order to obtain accurate numerical values for R .

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Change history

  • 08 March 2018

    In our recent publication (Smith et al., J Biomol NMR 65:171–191, 2016) on the dynamics of HET-s(218–289), we reported on page 176, that calculation of solid-state NMR R1ρ rate constants using analytical equations based on Redfield theory (Kurbanov et al., J Chem Phys 135:184104:184101–184109, 2011) failed when the correlation time of motion becomes too long.

References

  1. Abdullah A, Deris S, Anwar S, Arjunan SNV (2013) An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters. PLoS ONE 8:e56310

    ADS  Article  Google Scholar 

  2. Abergel D, Palmer AGI (2003) On the use of the stochastic Liouville equation in nuclear magnetic resonance: application to R1′ relaxation in the presence of exchange. Concepts Magn Reson A 19A:134–148

    Article  Google Scholar 

  3. Agarwal V, Penzel S, Szekely K, Cadalbert R, Testori E, Oss A, Past J, Samoson A, Ernst M, Böckmann A, Meier BH (2014) De novo 3D structure determination from sub-milligram protein samples by solid-state 100 kHz MAS NMR spectroscopy. Angew Chem Int Ed 53:12253–12256

    Article  Google Scholar 

  4. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. Allerhand A, Doddrell D, Glushko V, Cochran DW, Wenkert E, Lawson PJ, Gurd FRN (1971) Conformation and segmental motion of native and denatured ribonuclease a in solution. Application of natural-abundance carbon-13 partially relaxed Fourier transform nuclear magnetic resonance. J Am Chem Soc 93:544–546

    Article  Google Scholar 

  6. Asami S, Schmieder P, Reif B (2010) High resolution 1H-detected solid-state NMR spectroscopy of protein aliphatic resonances: access to tertiary structure information. J Am Chem Soc 132:15133–15135

    Article  Google Scholar 

  7. Asami S, Szekely K, Schanda P, Meier BH, Reif B (2012) Optimal degree of protonation for 1H detection of aliphatic sites in randomly deuterated proteins as a function of the MAS frequency. J Biomol NMR 54:155–168

    Article  Google Scholar 

  8. Asami S, Porter JR, Lange O, Reif B (2015) Access to Cα backbone dynamics of biological solids by 13C T1 relaxation and molecular dynamics simulation. J Am Chem Soc 137:1094–1100

    Article  Google Scholar 

  9. Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Res 147:296–330

    ADS  Article  Google Scholar 

  10. Balguerie A, Dos Reis S, Ritter C, Chaignepain S, Bénédicte C-S, Forge V, Bathany K, Lascu I, Schmitter J-M, Riek R, Saupe SJ (2003) Domain organization and structure ± function relationship of the HET-s prion protein of Podospora anserina. EMBO J 22:2071–2081

    Article  Google Scholar 

  11. Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A (2009) Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45:319–327

    Article  Google Scholar 

  12. Chevelkov V, Diehl A, Reif B (2007a) Quantitative measurement of differential 15N–Ha/b T2 relaxation rates in a perdeuterated protein by MAS solid-state NMR spectroscopy. Magn Reson Chem 45:S156–S160

    Article  Google Scholar 

  13. Chevelkov V, Zhuravleva AV, Xue Y, Reif B, Skrynnikov N (2007b) Combined analysis of 15N relaxation data from solid- and solution-state NMR spectroscopy. J Am Chem Soc 129:12594–12595

    Article  Google Scholar 

  14. Chevelkov V, Fink U, Reif B (2009) Quantitative analysis of backbone motion in proteins using MAS solid-state NMR spectroscopy. J Biomol NMR 45:197–206

    Article  Google Scholar 

  15. Clifford AA (1973) Multivariate error analysis: a handbook of error propagation and calculation in many-parameter systems. Wiley, New York

    Google Scholar 

  16. Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990) Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J Am Chem Soc 112:4989–4991

    Article  Google Scholar 

  17. Efron B, Tibshirani R (1993) An introduction to the bootstrap. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  18. Emsley L, Bodenhausen G (1992) Optimization of shaped selective pulses for NMR using a quaternion description of their overall propagators. J Magn Res 97:135–148

    ADS  Google Scholar 

  19. Ernst M, Meier BH (1998) Spin Diffusion in Solids. In: Ando I, Asakura T (eds) Solid state NMR of polymers, vol 84. Elsevier, Amsterdam, pp 83–121

    Google Scholar 

  20. Giraud N, Blackledge M, Goldman M, Böckmann A, Lesage A, Penin F, Emsley L (2005) Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation. J Am Chem Soc 127:18190–18201

    Article  Google Scholar 

  21. Giraud N, Blackledge M, Böckmann A, Emsley L (2007) The influence of nitrogen-15 proton-driven spin diffusion on the measurement of nitrogen-15 longitudinal relaxation time. J Magn Res 184:51–61

    ADS  Article  Google Scholar 

  22. Glass NL, Kaneko I (2003) Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2:1–8

    Article  Google Scholar 

  23. Good DB, Wang S, Ward ME, Struppe J, Brown LS, Lewandowski JR, Ladizhansky V (2014) Conformational dynamics of a seven transmembrane helical protein anabaena sensory rhodopsin probed by solid-state NMR. J Am Chem Soc 136:2833–2842

    Article  Google Scholar 

  24. Grommek A, Meier BH, Ernst M (2006) Distance information from proton-driven spin diffusion under MAS. Chem Phys Lett 427:404–409

    ADS  Article  Google Scholar 

  25. Gullion T, Schaefer J (1989a) Detection of weak heteronuclear dipolar recoupling by rotational-echo double-resonance nuclear magnetic resonance. Adv Magn Res 13:57–83

    Article  Google Scholar 

  26. Gullion T, Schaefer J (1989b) Rotational-echo double-resonance NMR. J Magn Res 81:196–200

    ADS  Google Scholar 

  27. Gullion T, Baker DB, Conradi MS (1990) New, compensated carr-purcell sequences. J Magn Res 89:479–484

    ADS  Google Scholar 

  28. Haeberlen U, Waugh JS (1969) Spin-lattice relaxation in periodically perturbed systems. Phys Rev 185:420–429

    ADS  Article  Google Scholar 

  29. Haller JD, Schanda P (2013) Amplitudes and time scales of picosecond-to-microsecond motion in proteins studied by solid-state NMR: a critical evaluation of experimental approaches and application to crystalline ubiquitin. J Biomol NMR 57:263–280

    Article  Google Scholar 

  30. Hediger S, Meier BH, Ernst RR (1995) Adiabatic passage Hartmann–Hahn cross polarization in NMR under magic angle sample spinning. Chem Phys Lett 240:449–456

    ADS  Article  Google Scholar 

  31. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    ADS  Article  Google Scholar 

  32. Herrmann US, Schütz AK, Shirani H, Huang D, Saban D, Nuvolone M, Li B, Ballmer B, Åslund AKO, Mason JJ, Rushing E, Budka H, Nyström S, Hammarström P, Böckmann A, Caflisch A, Meier BH, Nilsson KPR, Hornemann S, Aguzzi A (2015) Structure-based drug design identifies polythiophenes as antiprion compounds. Sci Transl Med 7:299ra123

    Article  Google Scholar 

  33. Hou G, Paramasivam S, Byeon I-JL, Gronenborn AM, Polenova T (2010) Determination of relative tensor orientations by c-encoded chemical shift anisotropy/heteronuclear dipolar coupling 3D NMR spectroscopy in biological solids. Phys Chem Chem Phys 12:14873–14883

    Article  Google Scholar 

  34. Jaroniec C, Tounge B, Rienstra C, Herzfeld J, Griffin R (2000) Recoupling of heteronuclear dipolar interactions with rotational-echo double-resonance at high magic-angle spinning frequencies. J Magn Reson 146:132–139

    ADS  Article  Google Scholar 

  35. Jaroniec CP, Tounge BA, Herzfeld J, Griffin RG (2001) Frequency selective heteronuclear dipolar recoupling in rotating solids: accurate 13C–15N distance measurements in uniformly 13C, 15N-labeled peptides. J Am Chem Soc 123:3507–3519

    Article  Google Scholar 

  36. Jeener J, Meier BH, Bachman P, Ernst RR (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553

    ADS  Article  Google Scholar 

  37. Kaiser R (1963) Use of the nuclear overhauser effect in the analysis of high-resolution nuclear magnetic resonance spectra. J Chem Phys 39:2435–2442

    ADS  Article  Google Scholar 

  38. Krushelnitsky A, Zinkevich T, Reichert D, Chevelkov V, Reif B (2010) Microsecond time scale mobility in a solid protein as studied by the 15N R1G site-specific NMR relaxation rates. J Am Chem Soc 132:11850–11853

    Article  Google Scholar 

  39. Kubo R (1963) Stochastic Liouville equations. J Math Phys 4:174–183

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. Kurbanov R, Zinkevich T, Krushelnitsky A (2011) The nuclear magnetic resonance relaxation data analysis in solids: general R 1/R 1 equations and the model-free approach. J Chem Phys 135:184101–184109

    ADS  Article  Google Scholar 

  41. Lamley JM, Lougher MJ, Sass HJ, Rogowski M, Grzesiek S, Lewandowski JR (2015) Unraveling the complexity of protein backbone dynamics with combined 13C and 15N solid-state NMR relaxation measurements. Phys Chem Chem Phys 17:21997–22008

    Article  Google Scholar 

  42. Lange A, Gattin Z, Van Melckebeke H, Wasmer C, Soragni A, Gunsteren WF, Meier BH (2009) A combined solid-state NMR and MD characterization of the stability and dynamics of the HET-s(218–289) prion in its amyloid conformation. ChemBioChem 10:1657–1665

    Article  Google Scholar 

  43. Lewandowski JR, Sein J, Sass HJ, Grzesiek S, Blackledge M, Emsley L (2010) Measurement of site-specific 13C spin-lattice relaxation in a crystalline protein. J Am Chem Soc 132:8252–8254

    Article  Google Scholar 

  44. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  Google Scholar 

  45. Lundström P, Hansen DF, Vallurupalli P, Kay LE (2009) Accurate measurement of alpha proton chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy. J Am Chem Soc 131:1915–1926

    Article  Google Scholar 

  46. Ma P, Haller JD, Zajakala J, Macek P, Siversten AC, Willbold D, Boisbouvier J, Schanda P (2014) Probing transient conformational states of proteins by solid-state R1p relaxation-dispersion NMR spectroscopy. Angew Chem Int Ed 53:4312–4317

    Article  Google Scholar 

  47. Ma P, Xue Y, Coquelle N, Haller JD, Yuwen T, Ayala I, Mikhailovskii O, Willbold D, Colletier J-P, Skrynnikov NR, Schanda P (2015) Observing the overall rocking motion of a protein in crystal. Nat Commun 6:8361

    Article  Google Scholar 

  48. McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28:430–431

    ADS  Article  Google Scholar 

  49. Mollica L, Baias M, Lewandowski JR, Wylie BJ, Sperling LJ, Rienstra CM, Emsley L, Blackledge M (2012) Atomic-resolution structural dynamics in crystalline proteins from NMR and molecular simulation. J Phys Chem Lett 3:3657–3662

    Article  Google Scholar 

  50. Nielsen NC, Bildsøe H, Jakobsen HJ (1994) Double-quantum homonuclear rotary resonance: efficient dipolar recovery in magic-angle spinning nuclear magnetic resonance. J Chem Phys 101:1805–1812

    ADS  Article  Google Scholar 

  51. Oas TG, Griffin RG, Levitt MH (1988) Rotary resonance recoupling of dipolar interactions in solid-state nuclear magnetic resonance spectroscopy. J Chem Phys 89:692–695

    ADS  Article  Google Scholar 

  52. Redfield AG (1957) On the theory of relaxation processes. IBM J Res Dev 1:19–31

    Article  Google Scholar 

  53. Saupe SJ (2000) Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiol Mol Biol Rev 64:489–502

    Article  Google Scholar 

  54. Schanda P, Meier BH, Ernst M (2010) Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy. J Am Chem Soc 132:15957–15967

    Article  Google Scholar 

  55. Schanda P, Meier BH, Ernst M (2011) Accurate measurement of one-bond H-X heteronuclear dipolar couplings in MAS solid-state NMR. J Magn Res 210:246–259

    ADS  Article  Google Scholar 

  56. Schneider DJ, Freed JH (1989) Spin relaxation and motional dynamics. Adv Chem Phys 73:387–527

    Google Scholar 

  57. Schütz AK, Soragni A, Hornemann S, Aguzzi A, Ernst M, Böckmann A, Meier BH (2011) The amyloid-congo red interface at atomic resolution. Angew Chem Int Ed 50:5956–5960

    Article  Google Scholar 

  58. Siemer AB, Ritter C, Steinmetz MO, Ernst M, Riek R, Meier BH (2006) 13C, 15N resonance assignment of parts of the HET-s prion protein in its amyloid form. J Biomol NMR 34:75–87

    Article  Google Scholar 

  59. Skrynnikov N (2007) Asymmetric doublets in MAS NMR: coherent and incoherent mechanisms. Magn Reson Chem 45:S161

    Article  Google Scholar 

  60. Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev Phys Rev PR 99:559

    ADS  Google Scholar 

  61. Takegoshi K, Nakamura S, Terao T (2001) 13C–1H dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    ADS  Article  Google Scholar 

  62. Takegoshi K, Nakamura S, Terao T (2003) 13C–1H dipolar-driven 13C–13C recoupling without 13C rf irradiation in nuclear magnetic resonance of rotating solids. J Chem Phys 118:2325–2341

    ADS  Article  Google Scholar 

  63. The MathWorks Inc., (2013) MATLAB, 2013b edn. Natick, Massachusetts

    Google Scholar 

  64. Torchia DA, Szabo A (1982) Spin-lattice relaxation in solids. J Magn Res 49:107–121

    ADS  Google Scholar 

  65. Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Böckmann A, Meier BH (2010) Atomic-resolution three-dimensional structure of HET-s(218-289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132:13765–13775

    Article  Google Scholar 

  66. Van Melckebeke H, Schanda P, Gath J, Wasmer C, Verel R, Lange A, Meier BH, Böckmann A (2011) Probing water accessibility in HET-s(218–289) amyloid fibrils by solid-state NMR. J Mol Biol 405:765–772

    Article  Google Scholar 

  67. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a β solenoid with a triangular hydrophobic core. Science 319:1523–1526

    ADS  Article  Google Scholar 

  68. Wittebort RJ, Szabo A (1978) Theory of NMR relaxation in macromolecules: restricted diffusion and jump models for multiple internal rotations in amino acid side chains. J Chem Phys 69:1722–1736

    ADS  Article  Google Scholar 

  69. Wylie BJ, Franks WT, Rienstra CM (2006) Determinations of 15N chemical shift anisotropy magnitudes in a uniformly 15N,13C-labeled microcrystalline protein by three-dimensional magic-angle spinning nuclear magnetic resonance spectroscopy. J Phys Chem B 110:10926–10936

    Article  Google Scholar 

  70. Xue Y, Skrynnikov N (2014) Ensemble MD simulations restrained via crystallographic data: accurate structure leads to accurate dynamics. Protein Sci 23:488–507

    Article  Google Scholar 

  71. Zhou DH, Rienstra CM (2008) High-performance solvent suppression for proton detected solid-state NMR. J Magn Res 192:167–172

    ADS  Article  Google Scholar 

  72. Zinkevich T, Chevelkov V, Reif B, Saalwächter K, Krushelnitsky A (2013) Internal protein dynamics on ps to us timescales as studied by multi-frequency 15N solid-state NMR relaxation. J Biomol NMR 57:219–235

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Swiss National Science Foundation (Grants 200020_146757 and 200020_159797). We would also like to acknowledge thorough and carefully considered comments from a reviewer.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Beat H. Meier or Matthias Ernst.

Additional information

A correction to this article is available online at https://doi.org/10.1007/s10858-018-0170-9.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3582 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smith, A.A., Testori, E., Cadalbert, R. et al. Characterization of fibril dynamics on three timescales by solid-state NMR. J Biomol NMR 65, 171–191 (2016). https://doi.org/10.1007/s10858-016-0047-8

Download citation

Keywords

  • Solid-state NMR
  • Magic-angle spinning
  • Dynamics
  • Relaxation
  • Fibrils