Journal of Biomolecular NMR

, Volume 64, Issue 4, pp 269–273 | Cite as

In situ NMR measurement of macromolecule-bound metal ion concentrations

  • Natalia Kozlyuk
  • Suvrajit Sengupta
  • Andrej Lupták
  • Rachel W. Martin


Many nucleic acids and proteins require divalent metal ions such as Mg2+ and Ca2+ for folding and function. The lipophilic alignment media frequently used as membrane mimetics also bind these divalent metals. Here we demonstrate the use of 31P NMR spectrum of a metal ion chelator (deoxycytidine diphosphate) to measure the bound [Mg2+] and [Ca2+] in situ for several biological model systems at relatively high divalent ion concentrations (1–10 mM). This method represents a general approach to measuring divalent metal ion binding in NMR samples where the amount and type of metal ion added to the system is known.


Divalent ion concentration 31P NMR dCDP Bicelles Dickerson dodecamer βγ-Crystallin Ca2+ dependent protein 



The authors acknowledge Dr. Philip Dennison for excellent management of the UCI NMR facility and Dr. Beniam Berhane for his help with biomolecular mass spectrometry. We thank Dr. Cassandra Burke and Jan Bierma for assistance with sample preparation. We acknowledge Prof. Juli Feigon for her helpful suggestions. This work was supported by NSF Grant CHE1308231 to RWM.

Supplementary material

10858_2016_31_MOESM1_ESM.docx (3.7 mb)
Supplementary material 1 (DOCX 3832 kb)


  1. Alvarez-Leefmans FJ, Giraldez F, Gamino SM (1987) Intracellular free magnesium in excitable cells: its measurement and its biologic significance. Can J Physiol Pharmacol 65:915–925CrossRefGoogle Scholar
  2. Arnold A, Labrot T, Oda R, Dufourc EJ (2002) Cation modulation of bicelle size and magnetic alignment as revealed by solid- state NMR and electron microscopy. Biophys J 83:2667–2680CrossRefGoogle Scholar
  3. Barnwal RP, Jobby MK, Devi KM, Sharma Y, Chary KV (2009) Solution structure and calcium-binding properties of M-crystallin, a primordial betagamma-crystallin from archae. J Mol Biol 386:675–689CrossRefGoogle Scholar
  4. Black CB, Huang H-W, Cowan JA (1994) Biological coordination chemistry of magnesium, sodium, and potassium ions. Protein and nucleotide binding domains. Coord Rev 135/136:165–202CrossRefGoogle Scholar
  5. Brindley AJ, Martin RW (2012) Effect of divalent cations on DMPC/DHPC bicelle formation and alignment. Langmuir 28:7788–7796CrossRefGoogle Scholar
  6. Clapham DE (1995) Calcium signaling. Cell 80:259–268CrossRefGoogle Scholar
  7. Cohn M, Hughes TR Jr (1962) Nuclear magnetic resonance spectra of adenosine di- and triphosphate. II. Effect of complexing with divalent metal ions. J Biol Chem 237:176–181Google Scholar
  8. Drew HR, Wing RM, Takano T, Broka C, Tanaka S, Itakura K, Dickerson RE (1981) Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci USA 78:2179–2183CrossRefADSGoogle Scholar
  9. Faham S, Bowie JU (2002) Bicelle crystallization: a new method for crystallizing membrane proteins yields a monomeric bacteriorhodopsin structure. J Mol Biol 316:1–6CrossRefGoogle Scholar
  10. Frey CM, Stuehr JE (1972) Interactions of divalent metal ions with inorganic and nucleotide phosphates. I. Thermodynamics. J Am Chem Soc 94:8898–8904CrossRefGoogle Scholar
  11. Garfinkel L, Garfinkel D (1984) Calculation of free-Mg2+ concentration in adenosine 5′- triphosphate containing solutions in vitro and in vivo. Biochemistry 23:3547–3552CrossRefGoogle Scholar
  12. Gresh N (1980) Intermolecular chelation of two serine phosphates by Ca2+ and Mg2+. A theoretical structural investigation. Biochim Biophys Acta 597:345–357CrossRefGoogle Scholar
  13. Gupta RK, Moore RD (1980) 31P NMR studies of intracellular free Mg2+ in intact frog skeletal muscle. J Biol Chem 255:3987–3993Google Scholar
  14. Gupta RK, Yushok WD (1980) The determination of the magnesium level in the human red blood cell by 31P NMR. Proc Natl Acad Sci USA 77:2487–2491CrossRefADSGoogle Scholar
  15. Gupta RK, Benovic JL, Rose ZB (1978) The determination of the free magnesium level in the human red blood cell by 31P NMR. J Biol Chem 253:6172–6176Google Scholar
  16. Hill AV (1910) The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves. J Physiol 40:iv–viiGoogle Scholar
  17. Khan MMT, Martell AE (1966) Thermodynamic quantities associated with the interaction of adenosine triphosphate with metal ions. J Am Chem Soc 88:668–671CrossRefGoogle Scholar
  18. Khan MMT, Martell AE (1967) Thermodynamic quantities associated with the interaction of adenosine diphosphoric and adenosine monophosphoric acids with metal ions. J Am Chem Soc 89:5585–5590CrossRefGoogle Scholar
  19. London RE (1991) Methods of measurement of intracellular magnesium: NMR and fluorescence. Annu Rev Physiol 53:241–258CrossRefGoogle Scholar
  20. Minason G, Tereshko V, Egli M (1999) Atomic- resolution crystal structures of B-DNA reveal specific influences of divalent metal ions on conformation and packing. J Mol Biol 291:83–99CrossRefGoogle Scholar
  21. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci 102:10870–10875CrossRefADSGoogle Scholar
  22. Pathuri P, Vogeley L, Luecke H (2008) Crystal structure of metastasis-associated protein S100A4 in the active calcium-bound form. J Mol Biol 383:62–77CrossRefGoogle Scholar
  23. Riccitelli NJ, Delwart E, Lupták A (2014) Identification of minimal HDV-like ribozymes with unique divalent metal ion dependence in the human microbiome. Biochemistry 53:1616–1626CrossRefGoogle Scholar
  24. Shimeld SM, Purkiss AG, Dirks RP, Bateman OA, Slingsby C, Lubsen NH (2005) Urochordate betagamma-crystallin and the evolutionary origin of the vertebrate eye lens. Curr Biol 20:1684–1689CrossRefGoogle Scholar
  25. Shui X, MacFail-Isom L, Hu GG, Williams LD (1998) The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry 37:8341–8355CrossRefGoogle Scholar
  26. Shulman RG, Sternlicht H, Wyluda BJ (1965) Study of metal-ion binding to nucleic acids by 31P nuclear magnetic resonance. J Chem Phys 43:3116–3122CrossRefADSGoogle Scholar
  27. Son T-D, Roux M, Ellenberger M (1975) Interaction of Mg2+ ions with nucleoside tri- phosphates by phosphorus magnetic resonance spectroscopy. Nucleic Acids Res 2:1101–1110CrossRefGoogle Scholar
  28. Sontheimer GM, Kuhn W, Kalbitzer HR (1986) Observation of Mg2+. ATP and uncomplexed ATP in slow exchange by 31P-NMR at high magnetic fields. Biochem Biophys Res Commun 134:1379–1386CrossRefGoogle Scholar
  29. Sreedhara A, Cowan JA (2002) Structural and catalytic roles for divalent magnesium in nucleic acid biochemistry. Biometals 15:211–223CrossRefGoogle Scholar
  30. Traaseth NJ, Shi L, Verardi R, Mullen DG, Barany G, Veglia G (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci 106:10165–10170CrossRefADSGoogle Scholar
  31. Turnay J, Olmo N, Gasset M, Iloro I, Arrondo JLR, Lizarbe MA (2002) Calcium- dependent conformational rearrangements and protein stability in chicken annexin A5. Biophys J 83:2280–2291CrossRefGoogle Scholar
  32. Yamamoto K, Pearcy P, Ramamoorthy A (2014) Bicelles exhibiting magnetic alignment for a broader range of temperatures: a solid-state NMR study. Langmuir 30:1622–1629CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of CaliforniaIrvineUSA
  2. 2.Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineUSA
  3. 3.Department of Pharmaceutical SciencesUniversity of CaliforniaIrvineUSA

Personalised recommendations