Skip to main content
Log in

Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We recently engineered encodable lanthanide binding tags (LBTs) into proteins and demonstrated their applicability in Nuclear Magnetic Resonance (NMR) spectroscopy, X-ray crystallography and luminescence studies. Here, we engineered two-loop-LBTs into the model protein interleukin-1β (IL1β) and measured 1H, 15N-pseudocontact shifts (PCSs) by NMR spectroscopy. We determined the Δχ-tensors associated with each Tm3+-loaded loop-LBT and show that the experimental PCSs yield structural information at the interface between the two metal ion centers at atomic resolution. Such information is very valuable for the determination of the sites of interfaces in protein–protein-complexes. Combining the experimental PCSs of the two-loop-LBT construct IL1β-S2R2 and the respective single-loop-LBT constructs IL1β-S2, IL1β-R2 we additionally determined the distance between the metal ion centers. Further, we explore the use of two-loop LBTs loaded with Gd3+ as a novel tool for distance determination by Electron Paramagnetic Resonance spectroscopy and show the NMR-derived distances to be remarkably consistent with distances derived from Pulsed Electron–Electron Dipolar Resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso-García N, García-Rubio I, Manso JA et al (2015) Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3,4 domains of integrin α6β4. Acta Crystallogr D Biol Crystallogr 71:969–985. doi:10.1107/S1399004715002485

    Article  Google Scholar 

  • Barthelmes K, Reynolds AM, Peisach E et al (2011) Engineering encodable lanthanide-binding tags into loop regions of proteins. J Am Chem Soc 133:808–819. doi:10.1021/ja104983t

    Article  Google Scholar 

  • Bentrop D, Bertini I, Cremonini MA et al (1997) Solution structure of the paramagnetic complex of the N-terminal domain of calmodulin with two Ce3 + ions by 1H NMR. Biochemistry 36:11605–11618. doi:10.1021/bi971022+

    Article  Google Scholar 

  • Bernstein FC, Koetzle TF, Williams GJ et al (1977) The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur J Biochem 80:319–324. doi:10.1016/S0022-2836(77)80200-3

    Article  Google Scholar 

  • Bertini I, Janik MB, Lee YM et al (2001) Magnetic susceptibility tensor anisotropies for a lanthanide ion series in a fixed protein matrix. J Am Chem Soc 123:4181–4188

    Article  Google Scholar 

  • Bertini I, Luchinat C, Parigi G (2002) Magnetic susceptibility in paramagnetic NMR. Prog Nucl Magn Reson Spectrosc 40:249–273. doi:10.1016/S0079-6565(02)00002-X

    Article  Google Scholar 

  • Dalaloyan A, Qi M, Ruthstein S et al (2015) Gd(iii)–Gd(iii) EPR distance measurements—the range of accessible distances and the impact of zero field splitting. Phys Chem Chem Phys 17:18464–18476. doi:10.1039/C5CP02602D

    Article  Google Scholar 

  • Duss O, Michel E, Yulikov M et al (2014) Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature 509:588–592. doi:10.1038/nature13271

    Article  ADS  Google Scholar 

  • Duss O, Yulikov M, Allain FH, Jeschke G (2015) Combining NMR and EPR to determine structures of large RNAs and protein–RNA complexes in solution. Methods Enzymol 558:279–331. doi:10.1016/bs.mie.2015.02.005

    Article  Google Scholar 

  • Garbuio L, Bordignon E, Brooks EK et al (2013) Orthogonal Spin Labeling and Gd(III)–nitroxide distance measurements on bacteriophage T4-lysozyme. J Phys Chem B 117:3145–3153. doi:10.1021/jp401806g

    Article  Google Scholar 

  • Göbl C, Madl T, Simon B, Sattler M (2014) NMR approaches for structural analysis of multidomain proteins and complexes in solution. Prog Nucl Magn Reson Spectrosc 80:26–63. doi:10.1016/j.pnmrs.2014.05.003

    Article  Google Scholar 

  • Goldfarb D (2014) Gd3+ spin labeling for distance measurements by pulse EPR spectroscopy. Phys Chem Chem Phys 16:9685. doi:10.1039/c3cp53822b

    Article  Google Scholar 

  • Gordon-Grossman M, Kaminker I, Gofman Y et al (2011) W-Band pulse EPR distance measurements in peptides using Gd3+–dipicolinic acid derivatives as spin labels. Phys Chem Chem Phys 13:10771. doi:10.1039/c1cp00011j

    Article  Google Scholar 

  • Hass MA, Ubbink M (2014) Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints. Curr Opin Struct Biol 24:45–53. doi:10.1016/j.sbi.2013.11.010

    Article  Google Scholar 

  • Jeschke G, Chechik V, Ionita P et al (2006) DeerAnalysis2006—a comprehensive software package for analyzing pulsed ELDOR data. Appl Magn Reson 30:473–498. doi:10.1007/BF03166213

    Article  Google Scholar 

  • Keizers PHJ, Ubbink M (2011) Paramagnetic tagging for protein structure and dynamics analysis. Prog Nucl Magn Reson Spectrosc 58:88–96. doi:10.1016/j.pnmrs.2010.08.001

    Article  Google Scholar 

  • Lapinaite A, Simon B, Skjaerven L et al (2013) The structure of the box C/D enzyme reveals regulation of RNA methylation. Nature 502:519–523. doi:10.1038/nature12581

    Article  ADS  Google Scholar 

  • Loscha KV, Herlt AJ, Qi R et al (2012) Multiple-site labeling of proteins with unnatural amino acids. Angew Chem Int Ed 51:2243–2246. doi:10.1002/anie.201108275

    Article  Google Scholar 

  • Lueders P, Jeschke G, Yulikov M (2011) Double electron–electron resonance measured between Gd3+ ions and nitroxide radicals. J Phys Chem Lett 2:604–609. doi:10.1021/jz200073h

    Article  Google Scholar 

  • Lueders P, Jäger H, Hemminga MA et al (2013) Distance measurements on orthogonally spin-labeled membrane spanning WALP23 polypeptides. J Phys Chem B 117:2061–2068. doi:10.1021/jp311287t

    Article  Google Scholar 

  • Lynch M (2013) Evolutionary diversification of the multimeric states of proteins. Proc Natl Acad Sci U S A 110:E2821–E2828. doi:10.1073/pnas.1310980110

    Article  ADS  Google Scholar 

  • Mackereth CD, Madl T, Bonnal S et al (2011) Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature 475:408–411. doi:10.1038/nature10171

    Article  Google Scholar 

  • Martin LJ, Hähnke MJ, Nitz M et al (2007) Double-lanthanide-binding tags: design, photophysical properties, and NMR applications. J Am Chem Soc 129:7106–7113. doi:10.1021/ja070480v

    Article  Google Scholar 

  • Matalon E, Huber T, Hagelueken G et al (2013) Gadolinium(III) spin labels for high-sensitivity distance measurements in transmembrane helices. Angew Chem Int Ed 52:11831–11834. doi:10.1002/anie.201305574

    Article  Google Scholar 

  • Pannier M, Veit S, Godt A et al (2000) Dead-time free measurement of dipole–dipole interactions between electron spins. J Magn Reson 142:331–340. doi:10.1006/jmre.1999.1944

    Article  ADS  Google Scholar 

  • Potapov A, Song Y, Meade TJ et al (2010) Distance measurements in model bis-Gd(III) complexes with flexible “bridge”. Emulation of biological molecules having flexible structure with Gd(III) labels attached. J Magn Reson 205:38–49. doi:10.1016/j.jmr.2010.03.019

    Article  ADS  Google Scholar 

  • Raitsimring AM, Gunanathan C, Potapov A et al (2007) Gd3+ complexes as potential spin labels for high field pulsed EPR distance measurements. J Am Chem Soc 129:14138–14139. doi:10.1021/ja075544g

    Article  Google Scholar 

  • Russo L, Maestre-Martinez M, Wolff S et al (2013) Interdomain dynamics explored by paramagnetic NMR. J Am Chem Soc 135:17111–17120. doi:10.1021/ja408143f

    Article  Google Scholar 

  • Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40:1. doi:10.1017/S003358350700460X

    Article  Google Scholar 

  • Schmitz C, Stanton-Cook MJ, Su X-C et al (2008) Numbat: an interactive software tool for fitting Deltachi-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR 41:179–189. doi:10.1007/s10858-008-9249-z

    Article  Google Scholar 

  • Silvaggi NR, Martin LJ, Schwalbe H et al (2007) Double-lanthanide-binding tags for macromolecular crystallographic structure determination. J Am Chem Soc 129:7114–7120. doi:10.1021/ja070481n

    Article  Google Scholar 

  • Song Y, Meade TJ, Astashkin AV et al (2011) Pulsed dipolar spectroscopy distance measurements in biomacromolecules labeled with Gd(III) markers. J Magn Reson 210:59–68. doi:10.1016/j.jmr.2011.02.010

    Article  ADS  Google Scholar 

  • Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55. doi:10.1016/j.jmr.2005.08.013

    Article  ADS  Google Scholar 

  • Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234. doi:10.1016/j.pep.2005.01.016

    Article  Google Scholar 

  • Tamm LK, Lai AL, Li Y (2007) Combined NMR and EPR spectroscopy to determine structures of viral fusion domains in membranes. Biochim Biophys Acta Biomembr 1768:3052–3060. doi:10.1016/j.bbamem.2007.09.010

    Article  Google Scholar 

  • Wöhnert J, Franz KJ, Nitz M et al (2003) Protein alignment by a coexpressed lanthanide-binding tag for the measurement of residual dipolar couplings. J Am Chem Soc 125:13338–13339. doi:10.1021/ja036022d

    Article  Google Scholar 

  • Wolfram Research Inc., (2014) Mathematica version 10.0. Champaign

  • Yagi H, Banerjee D, Graham B et al (2011) Gadolinium tagging for high-precision measurements of 6 nm distances in protein assemblies by EPR. J Am Chem Soc 133:10418–10421. doi:10.1021/ja204415w

    Article  Google Scholar 

  • Yulikov M, Lueders P, Farooq Warsi M et al (2012) Distance measurements in Au nanoparticles functionalized with nitroxide radicals and Gd3+–DTPA chelate complexes. Phys Chem Chem Phys 14:10732. doi:10.1039/c2cp40282c

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dmitry Akhmetzyanov for helpful discussions. This work was supported by Deutsche Forschungsgemeinschaft (DFG) in collaborative research centers 807 and 902. H.S. and T.P. are members of the DFG-funded cluster of excellence: macromolecular complexes and BMRZ is supported by the state of Hesse. K.N.A and B.I. acknowledge the support of NSF Grant MCB 0744415.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas Prisner or Harald Schwalbe.

Additional information

D. Barthelmes, M. Gränz and K. Barthelmes have contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1013 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barthelmes, D., Gränz, M., Barthelmes, K. et al. Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy. J Biomol NMR 63, 275–282 (2015). https://doi.org/10.1007/s10858-015-9984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9984-x

Keywords

Navigation