Skip to main content
Log in

Dynamic nuclear polarization of nucleic acid with endogenously bound manganese

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We report the direct dynamic nuclear polarization (DNP) of 13C nuclei of a uniformly [13C,15N]-labeled, paramagnetic full-length hammerhead ribozyme (HHRz) complex with Mn2+ where the enhanced polarization is fully provided by the endogenously bound metal ion and no exogenous polarizing agent is added. A 13C enhancement factor of ε = 8 was observed by intra-complex DNP at 9.4 T. In contrast, “conventional” indirect and direct DNP experiments were performed using AMUPol as polarizing agent where we obtained a 1H enhancement factor of ε ≈ 250. Comparison with the diamagnetic (Mg2+) HHRz complex shows that the presence of Mn2+ only marginally influences the (DNP-enhanced) NMR properties of the RNA. Furthermore two-dimensional correlation spectra (15N–13C and 13C–13C) reveal structural inhomogeneity in the frozen, amorphous state indicating the coexistence of several conformational states. These demonstrations of intra-complex DNP using an endogenous metal ion as well as DNP-enhanced MAS NMR of RNA in general yield important information for the development of new methods in structural biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abragam A, Proctor WG (1958) Une nouvelle méthode de polarisation dynamique des noyaux atomiques dans les solides. CR Hebd Acad Sci 246:2253–2256

    Google Scholar 

  • Abramov G, Goldbourt A (2014) Nucleotide-type chemical shift assignment of the encapsulated 40 kbp dsDNA in intact bacteriophage T7 by MAS solid-state NMR. J Biomol NMR 59:219–230

    Article  Google Scholar 

  • Akbey Ü, Franks WT, Linden A, Lange S, Griffin RG, van Rossum BJ, Oschkinat H (2010) Dynamic nuclear polarization of deuterated proteins. Angew Chem Int Ed 49:7803–7806

    Article  Google Scholar 

  • Bassi GS, Murchie AI, Lilley DM (1996) The ion-induced folding of the hammerhead ribozyme: core sequence changes that perturb folding into the active conformation. RNA 2:756–768

    Google Scholar 

  • Bayro MJ, Maly T, Birkett NR, MacPhee CE, Dobson CM, Griffin RG (2010) High-resolution MAS NMR analysis of PI3-SH3 amyloid fibrils: backbone conformation and implications for protofilament assembly and structure. Biochemistry 49:7474–7484

    Article  Google Scholar 

  • Becerra LR, Gerfen GJ, Temkin RJ, Singel DJ, Griffin RG (1993) Dynamic nuclear polarization with a cyclotron resonance maser at 5T. Phys Rev Lett 71:3561–3564

    Article  ADS  Google Scholar 

  • Beilstein K, Wittmann A, Grez M, Suess B (2015) Conditional control of mammalian gene expression by tetracycline-dependent hammerhead ribozymes. ACS Synth Biol 4:526–534

    Article  Google Scholar 

  • Bloembergen N (1949) On the interaction of nuclear spins in a crystalline lattice. Physica 15:386–426

    Article  ADS  Google Scholar 

  • Bothe JR, Nikolova EN, Eichhorn CD, Chugh J, Hansen AL, Al-Hashimi HM (2011) Characterizing RNA dynamics at atomic resolution using solution-state NMR spectroscopy. Nat Methods 8:919–931

    Article  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  ADS  Google Scholar 

  • Cherepanov AV, Glaubitz C, Schwalbe H (2010) High-resolution studies of uniformly 13C,15N-labeled RNA by solid-state NMR spectroscopy. Angew Chem Int Ed 49:4747–4750

    Article  Google Scholar 

  • Chi Y-I, Martick M, Lares M, Kim R, Scott WG, Kim S-H (2008) Capturing hammerhead ribozyme structures in action by modulating general base catalysis. PLoS Biol 6:2060–2068

    Google Scholar 

  • Corzilius B, Smith AA, Barnes AB, Luchinat C, Bertini I, Griffin RG (2011) High-Field dynamic nuclear polarization with high-spin transition metal ions. J Am Chem Soc 133:5648–5651

    Article  Google Scholar 

  • Corzilius B, Smith AA, Griffin RG (2012) Solid Effect in magic angle spinning dynamic nuclear polarization. J Chem Phys 137:054201

    Article  ADS  Google Scholar 

  • Corzilius B, Andreas LB, Smith AA, Ni QZ, Griffin RG (2014) Paramagnet-induced signal quenching in MAS-DNP experiments on frozen homogeneous solutions. J Magn Reson 240:113–123

    Article  ADS  Google Scholar 

  • Dahm SC, Uhlenbeck OC (1991) Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30:9464–9469

    Article  Google Scholar 

  • De la Peña M, Gago S, Flores R (2003) Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J 22:5561–5570

    Article  Google Scholar 

  • Fernández-de-Alba C et al (2015) Matrix-free DNP-enhanced NMR spectroscopy of liposomes using a lipid-anchored biradical, chemistry. Eur J 21:4512–4517

    Article  Google Scholar 

  • Forster AC, Symons RH (1987) Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell 50:9–16

    Article  Google Scholar 

  • Franks WT, Kloepper K, Wylie B, Rienstra C (2007) Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins. J Biomol NMR 39:107–131

    Article  Google Scholar 

  • Fürtig B, Richter C, Wöhnert J, Schwalbe H (2003) NMR spectroscopy of RNA. ChemBioChem 4:936–962

    Article  Google Scholar 

  • Fürtig B, Richter C, Schell P, Wenter P, Pitsch S, Schwalbe H (2008) NMR-spectroscopic characterisation of phosphodiester bond cleavage catalyzed by the minimal hammerhead ribozyme. RNA Biol 5:41–48

    Article  Google Scholar 

  • Glowinkowski S, Jurga S, Suchanski W, Szczesniak E (1997) Local and global dynamics in the glass-forming di-isobutyl phthalate as studied by 1H NMR. Solid State Nucl Magn Reson 7:313–317

    Article  Google Scholar 

  • Gutsche P, Rinsdorf M, Zimmermann H, Schmitt H, Haeberlen U (2004) The shape and information content of high-field solid-state proton NMR spectra of methyl groups. Solid State Nucl Magn Reson 25:227–240

    Article  Google Scholar 

  • Hall DA, Maus DC, Gerfen GJ, Inati SJ, Becerra LR, Dahlquist FW, Griffin RG (1997) Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276:930–932

    Article  Google Scholar 

  • Hammann C, Norman DG, Lilley DMJ (2001) Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR. Proc Natl Acad Sci U S A 98:5503–5508

    Article  ADS  Google Scholar 

  • Hing AW, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magn Reson 96:205–209

    ADS  Google Scholar 

  • Horton TE, Clardy DR, DeRose VJ (1998) Electron paramagnetic resonance spectroscopic measurement of Mn2+ binding affinities to the hammerhead ribozyme and correlation with cleavage activity. Biochemistry 37:18094–18101

    Article  Google Scholar 

  • Hovav Y, Feintuch A, Vega S (2010) Theoretical aspects of dynamic nuclear polarization in the solid state—the solid effect. J Magn Reson 207:176–189

    Article  ADS  Google Scholar 

  • Hovav Y, Feintuch A, Vega S (2012) Theoretical aspects of dynamic nuclear polarization in the solid state—the cross effect. J Magn Reson 214:29–41

    Article  ADS  Google Scholar 

  • Hu KN (2011) Polarizing agents and mechanisms for high-field dynamic nuclear polarization of frozen dielectric solids. Solid State Nucl Magn Reson 40:31–41

    Article  ADS  Google Scholar 

  • Hu KN, Yu HH, Swager TM, Griffin RG (2004) Dynamic nuclear polarization with biradicals. J Am Chem Soc 126:10844–10845

    Article  Google Scholar 

  • Hu KN, Debelouchina GT, Smith AA, Griffin RG (2011) Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics. J Chem Phys 134:19

    Google Scholar 

  • Huang W, Bardaro MF Jr, Varani G, Drobny GP (2012) Preparation of RNA samples with narrow line widths for solid state NMR investigations. J Magn Reson 223:51–54

    Article  ADS  Google Scholar 

  • Hutchins CJ, Rathjen PD, Forster AC, Symons RH (1986) Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Res 14:3627–3640

    Article  Google Scholar 

  • Jaroniec CP, Filip C, Griffin RG (2002) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly C-13, N-15-labeled solids. J Am Chem Soc 124:10728–10742

    Article  Google Scholar 

  • Jeffries CD (1957) Polarization of nuclei by resonance saturation in paramagnetic crystals. Phys Rev 106:164–165

    Article  ADS  Google Scholar 

  • Jeffries CD (1960) Dynamic orientation of nuclei by forbidden transitions in paramagnetic resonance. Phys Rev 117:1056–1069

    Article  ADS  Google Scholar 

  • Kessenikh AV, Lushchikov VI, Manenkov AA, Taran YV (1963) Proton polarization in irradiated polyethylenes. Sov Phys-Sol State 5:321–329

    Google Scholar 

  • Khvorova A, Lescoute A, Westhof E, Jayasena SD (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Mol Biol 10:708–712

    Article  Google Scholar 

  • Lange S, Linden AH, Akbey Ü, Franks WT, Loening NM, van Rossum B-J, Oschkinat H (2012) The effect of biradical concentration on the performance of DNP-MAS-NMR. J Magn Reson 216:209–212

    Article  ADS  Google Scholar 

  • Li Y, Berthold DA, Frericks HL, Gennis RB, Rienstra CM (2007) Partial 13C and 15N chemical-shift assignments of the disulfide-bond-forming enzyme DsbB by 3D magic-angle spinning NMR spectroscopy. ChemBioChem 8:434–442

    Article  MATH  Google Scholar 

  • Maly T, Miller AF, Griffin RG (2010) In situ high-field dynamic nuclear polarization-direct and indirect polarization of C-13 nuclei. ChemPhysChem 11:999–1001

    Article  Google Scholar 

  • Maly T, Cui D, Griffin RG, Miller A-F (2012) 1H dynamic nuclear polarization based on an endogenous radical. J Phys Chem B 116:7055–7065

    Article  Google Scholar 

  • Marchanka A, Simon B, Carlomagno T (2013) A suite of solid-state NMR experiments for RNA intranucleotide resonance assignment in a 21 kDa protein–RNA complex. Angew Chem Int Ed 52:9996–10001

    Article  Google Scholar 

  • Marchanka A, Simon B, Althoff-Ospelt G, Carlomagno T (2015) RNA structure determination by solid-state NMR spectroscopy. Nat Commun 6:7024

    Article  ADS  Google Scholar 

  • Martick M, Scott WG (2006) Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126:309–320

    Article  Google Scholar 

  • Martick M, Lee T-S, York DM, Scott WG (2008) Solvent structure and hammerhead ribozyme catalysis. Chem Biol 15:332–342

    Article  Google Scholar 

  • Morrissey SR, Horton TE, Grant CV, Hoogstraten CG, Britt RD, DeRose VJ (1999) Mn2+-nitrogen interactions in RNA probed by electron spin-echo envelope modulation spectroscopy: application to the hammerhead ribozyme. J Am Chem Soc 121:9215–9218

    Article  Google Scholar 

  • Morrissey SR, Horton TE, DeRose VJ (2000) Mn2+ sites in the hammerhead ribozyme investigated by EPR and continuous-wave Q-band ENDOR spectroscopies. J Am Chem Soc 122:3473–3481

    Article  Google Scholar 

  • Murray JB, Terwey DP, Maloney L, Karpeisky A, Usman N, Beigelman L, Scott WG (1998) The structural basis of hammerhead ribozyme self-cleavage. Cell 92:665–673

    Article  Google Scholar 

  • Ni QZ et al (2013) High frequency dynamic nuclear polarization. Acc Chem Res 46:1933–1941

    Article  Google Scholar 

  • Nikolova EN, Kim E, Wise AA, O’Brien PJ, Andricioaei I, Al-Hashimi HM (2011) Transient Hoogsteen base pairs in canonical duplex DNA. Nature 470:498–502

    Article  ADS  Google Scholar 

  • Nozirov F, Nazirov A, Jurga S, Fu R (2006) Molecular dynamics of poly(l-lactide) biopolymer studied by wide-line solid-state 1H and 2H NMR spectroscopy. Solid State Nucl Magn Reson 29:258–266

    Article  Google Scholar 

  • Osborne EM, Ward WL, Ruehle MZ, DeRose VJ (2009) The identity of the nucleophile substitution may influence metal interactions with the cleavage site of the minimal hammerhead ribozyme. Biochemistry 48:10654–10664

    Article  Google Scholar 

  • Overhauser AW (1953) Polarization of nuclei in metals. Phys Rev 92:411–415

    Article  MATH  ADS  Google Scholar 

  • Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain 13C and 15N signal assignments of the α-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 Tesla. ChemBioChem 2:272–281

    Article  Google Scholar 

  • Pley HW, Flaherty KM, McKay DB (1994) Three-dimensional structure of a hammerhead ribozyme. Nature 372:68–74

    Article  ADS  Google Scholar 

  • Prody GA, Bakos JT, Buzayan JM, Schneider IR, Bruening G (1986) Autolytic processing of dimeric plant virus satellite RNA. Science 231:1577–1580

    Article  ADS  Google Scholar 

  • Renault M et al (2012) Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew Chem Int Ed 51:2998–3001

    Article  Google Scholar 

  • Rinnenthal J, Buck J, Ferner J, Wacker A, Fürtig B, Schwalbe H (2011) Mapping the landscape of RNA dynamics with NMR spectroscopy. Acc Chem Res 44:1292–1301

    Article  Google Scholar 

  • Rohrer M, Brügmann O, Kinzer B, Prisner TF (2001) High-field/high-frequency EPR spectrometer operating in pulsed and continuous-wave mode at 180 GHz. Appl Magn Reson 21:257–274

    Article  Google Scholar 

  • Rossini AJ et al (2012) One hundred fold overall sensitivity enhancements for Silicon-29 NMR spectroscopy of surfaces by dynamic nuclear polarization with CPMG acquisition. Chem Sci 3:108–115

    Article  Google Scholar 

  • Sauvée C, Rosay M, Casano G, Aussenac F, Weber RT, Ouari O, Tordo P (2013) Highly efficient, water-soluble polarizing agents for dynamic nuclear polarization at high frequency. Angew Chem Int Ed 52:10858–10861

    Article  Google Scholar 

  • Schiemann O, Fritscher J, Kisseleva N, Sigurdsson ST, Prisner TF (2003) Structural investigation of a high-affinity MnII binding site in the hammerhead ribozyme by EPR spectroscopy and DFT calculations. Effects of neomycin B on metal–ion binding. ChemBioChem 4:1057–1065

    Article  Google Scholar 

  • Scott WG, Finch JT, Klug A (1995) The crystal structure of an AII-RNA hammerhead ribozyme: a proposed mechanism for RNA catalytic cleavage. Cell 81:991–1002

    Article  Google Scholar 

  • Scott WG, Murray JB, Arnold JRP, Stoddard BL, Klug A (1996) Capturing the structure of a catalytic RNA intermediate: the hammerhead ribozyme. Science 274:2065–2069

    Article  ADS  Google Scholar 

  • Shimon D, Hovav Y, Feintuch A, Goldfarb D, Vega S (2012) Dynamic nuclear polarization in the solid state: a transition between the cross effect and the solid effect. Phys Chem Chem Phys 14:5729–5743

    Article  Google Scholar 

  • Smith AA, Corzilius B, Barnes AB, Maly T, Griffin RG (2012) Solid effect dynamic nuclear polarization and polarization pathways. J Chem Phys 136:015101

    Article  ADS  Google Scholar 

  • Smith AN, Caporini MA, Fanucci GE, Long JR (2015) A method for dynamic nuclear polarization enhancement of membrane proteins. Angew Chem Int Ed 54:1542–1546

    Article  Google Scholar 

  • Sripakdeevong P et al (2014) Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts. Nat Methods 11:413–416

    Article  Google Scholar 

  • Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55

    Article  ADS  Google Scholar 

  • Szeverenyi NM, Sullivan MJ, Maciel GE (1982) Observation of spin exchange by two-dimensional fourier transform 13C cross polarization-magic-angle spinning. J Magn Reson 47:462–475

    ADS  Google Scholar 

  • Wang S, Karbstein K, Peracchi A, Beigelman L, Herschlag D (1999) Identification of the hammerhead ribozyme metal ion binding site responsible for rescue of the deleterious effect of a cleavage site phosphorothioate. Biochemistry 38:14363–14378

    Article  Google Scholar 

  • Ward WL, DeRose VJ (2012) Ground-state coordination of a catalytic metal to the scissile phosphate of a tertiary-stabilized hammerhead ribozyme. RNA 18:16–23

    Article  Google Scholar 

  • Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218-289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    Article  ADS  Google Scholar 

  • Wenckebach WT (2008) The solid effect. Appl Magn Reson 34:227–235

    Article  Google Scholar 

  • Wittmann A, Suess B (2011) Selection of tetracycline inducible self-cleaving ribozymes as synthetic devices for gene regulation in yeast. Mol BioSyst 7:2419–2427

    Article  Google Scholar 

  • Wylie BJ, Dzikovski BG, Pawsey S, Caporini M, Rosay M, Freed JH, McDermott AE (2015) Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces. J Biomol NMR 61:361–367

    Article  Google Scholar 

  • Yen L et al (2004) Exogenous control of mammalian gene expression through modulation of RNA self-cleavage. Nature 431:471–476

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) via Emmy Noether Grant CO802/2-1 issued to B.C. as well as DFG collaborative research center (Sonderforschungsbereich) 902, and by the Center for Biomolecular Magnetic Resonance (BMRZ). We thank J. Becker-Baldus and T. Gutmann for access to DNP spectrometers and technical assistance. Help from D. Akhmetzyanov during 180 GHz EPR experiments is gratefully acknowledged. We thank T. Prisner for proposing HHRz as the target system of this study, as well as H. Schwalbe and J. Wöhnert for helpful discussions. The sweepable MAS DNP NMR spectrometer was Granted to G. Buntkowsky (Darmstadt) via DFG Grant BU911/20-1.

Funding

Deutsche Forschungsgemeinschaft (DFG) Grants CO802/2-1, SFB902, and BU911/20-1; Center for Biomolecular Magnetic Resonance (BMRZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Corzilius.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2987 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wenk, P., Kaushik, M., Richter, D. et al. Dynamic nuclear polarization of nucleic acid with endogenously bound manganese. J Biomol NMR 63, 97–109 (2015). https://doi.org/10.1007/s10858-015-9972-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-9972-1

Keywords

Navigation