Journal of Biomolecular NMR

, Volume 63, Issue 1, pp 9–19 | Cite as

Fast multi-dimensional NMR acquisition and processing using the sparse FFT

  • Haitham Hassanieh
  • Maxim Mayzel
  • Lixin Shi
  • Dina Katabi
  • Vladislav Yu Orekhov
Article

Abstract

Increasing the dimensionality of NMR experiments strongly enhances the spectral resolution and provides invaluable direct information about atomic interactions. However, the price tag is high: long measurement times and heavy requirements on the computation power and data storage. We introduce sparse fast Fourier transform as a new method of NMR signal collection and processing, which is capable of reconstructing high quality spectra of large size and dimensionality with short measurement times, faster computations than the fast Fourier transform, and minimal storage for processing and handling of sparse spectra. The new algorithm is described and demonstrated for a 4D BEST-HNCOCA spectrum.

Keywords

Compressed sensing Reduced dimensionality Non uniform sampling Fast NMR 

Supplementary material

10858_2015_9952_MOESM1_ESM.docx (155 kb)
Supplementary material 1 (DOCX 155 kb)

References

  1. Aoto PC, Fenwick RB, Kroon GJA, Wright PE (2014) Accurate scoring of non-uniform sampling schemes for quantitative NMR. J Magn Reson 246:31–35. doi:10.1016/j.jmr.2014.06.020 CrossRefADSGoogle Scholar
  2. Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J Magn Reson 73:69–77ADSGoogle Scholar
  3. Billeter M, Orekhov VY (2012) Preface: fast NMR methods are here to stay. In: Billeter M, Orekhov VY (eds) Novel sampling approaches in higher dimensional NMR, vol 316. Springer, Heidelberg, pp ix–xivCrossRefGoogle Scholar
  4. Bodenhausen G, Ernst RR (1981) The accordion experiment, a simple approach to 3-dimensional NMR spectroscopy. J Magn Reson 45:367–373. doi:10.1016/0022-2364(81)90137-2 ADSGoogle Scholar
  5. Bracewell RN (1956) Strip integration in radio astronomy. Aust J Phys 9:198–217MATHMathSciNetCrossRefADSGoogle Scholar
  6. Bretthorst GL (1990) Bayesian-analysis. 1. Parameter-estimation using quadrature NMR models. J Magn Reson 88:533–551. doi:10.1016/0022-2364(90)90287-j ADSGoogle Scholar
  7. Chylla RA, Markley JL (1995) Theory and application of the maximum-likelihood principle to NMR parameter-estimation of multidimensional NMR data. J Biomol NMR 5:245–258CrossRefGoogle Scholar
  8. Coggins BE, Venters RA, Zhou P (2010) Radial sampling for fast NMR: concepts and practices over three decades. Prog Nucl Magn Res Spectrosc 57:381–419. doi:10.1016/j.pnmrs.2010.07.001 CrossRefGoogle Scholar
  9. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  10. Eghbalnia HR, Bahrami A, Tonelli M, Hallenga K, Markley JL (2005) High-resolution iterative frequency identification for NMR as a general strategy for multidimensional data collection. J Am Chem Soc 127:12528–12536. doi:10.1021/ja052120i CrossRefGoogle Scholar
  11. Freeman R, Kupce E (2003) New methods for fast multidimensional NMR. J Biomol NMR 27:101–113. doi:10.1023/a:1024960302926 CrossRefGoogle Scholar
  12. Frey MA, Sethna ZM, Manley GA, Sengupta S, Zilm KW, Loria JP, Barrett SE (2013) Accelerating multidimensional NMR and MRI experiments using iterated maps. J Magn Reson 237:100–109. doi:10.1016/j.jmr.2013.09.005 CrossRefADSGoogle Scholar
  13. Ghazi B, Hassanieh H, Indyk P, Katabi D, Price E, Shi L (2013) Sample-optimal average-case sparse Fourier transform in two dimensions. In: 51st annual Allerton conference on communication, control, and computing, October 2013Google Scholar
  14. Hassanieh H, Indyk P, Katabi D, Price E (2012a) Nearly optimal sparse fourier transform. In: The 44th symposium on theory of computing, STOCGoogle Scholar
  15. Hassanieh H, Indyk P, Katabi D, Price E (2012b) Simple and practical algorithm for sparse fourier transform. In: Twenty-third annual ACM-SIAM symposium on discrete algorithms, SODAGoogle Scholar
  16. Hiller S, Fiorito F, Wuthrich K, Wider G (2005) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102:10876–10881. doi:10.1073/pnas.0504818102 CrossRefADSGoogle Scholar
  17. Hiller S, Wasmer C, Wider G, Wuthrich K (2007) Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR spectroscopy. J Am Chem Soc 129:10823–10828. doi:10.1021/ja072564+ CrossRefGoogle Scholar
  18. Hoch JC, Maciejewski MW, Mobli M, Schuyler AD, Stern AS (2014) Nonuniform sampling and maximum entropy reconstruction in multidimensional NMR. Acc Chem Res 47:708–717. doi:10.1021/ar400244v CrossRefGoogle Scholar
  19. Holland DJ, Bostock MJ, Gladden LF, Nietlispach D (2011) Fast multidimensional NMR spectroscopy using compressed sensing. Angew Chem Int Ed 50:6548–6551. doi:10.1002/anie.201100440 CrossRefGoogle Scholar
  20. Hyberts SG, Arthanari H, Robson SA, Wagner G (2014) Perspectives in magnetic resonance: NMR in the post-FFT era. J Magn Reson 241:60–73. doi:10.1016/j.jmr.2013.11.014 CrossRefADSGoogle Scholar
  21. Jaravine VA, Orekhov VY (2006) Targeted acquisition for real-time NMR spectroscopy. J Am Chem Soc 128:13421–13426. doi:10.1021/Ja062146p CrossRefGoogle Scholar
  22. Jaravine V, Ibraghimov I, Orekhov VY (2006) Removal of a time barrier for high-resolution multidimensional NMR spectroscopy. Nat Methods 3:605–607. doi:10.1038/Nmeth900 CrossRefGoogle Scholar
  23. Kazimierczuk K, Orekhov VY (2011) Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed 50:5556–5559. doi:10.1002/anie.201100370 CrossRefGoogle Scholar
  24. Kazimierczuk K, Kozminski W, Zhukov I (2006) Two-dimensional Fourier transform of arbitrarily sampled NMR data sets. J Magn Reson 179:323–328. doi:10.1016/j.jmr.2006.02.001 CrossRefADSGoogle Scholar
  25. Kazimierczuk K, Zawadzka-Kazimierczuk A, Koźmiński W (2010) Non-uniform frequency domain for optimal exploitation of non-uniform sampling. J Magn Reson 205:286–292. doi:10.1016/j.jmr.2010.05.012 CrossRefADSGoogle Scholar
  26. Kupce E, Freeman R (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440. doi:10.1021/ja049432q CrossRefGoogle Scholar
  27. Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169. doi:10.1016/j.jmr.2007.04.002 CrossRefADSGoogle Scholar
  28. Matsuki Y, Eddy MT, Herzfeld J (2009) Spectroscopy by integration of frequency and time domain information for fast acquisition of high-resolution dark spectra. J Am Chem Soc 131:4648–4656. doi:10.1021/ja807893k CrossRefGoogle Scholar
  29. Mayzel M, Kazimierczuk K, Orekhov VY (2014) The causality principle in the reconstruction of sparse NMR spectra. Chem Commun (Camb) 50:8947–8950. doi:10.1039/C4CC03047H CrossRefGoogle Scholar
  30. Mobli M, Stern AS, Hoch JC (2006) Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. J Magn Reson 182:96–105. doi:10.1016/j.jmr.2006.06.007 CrossRefADSGoogle Scholar
  31. Motáčková V, Nováček J, Zawadzka-Kazimierczuk A, Kazimierczuk K, Žídek L, Šanderová H, Krásný L, Koźmiński W, Sklenář V (2010) Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments. J Biomol NMR 48:169–177. doi:10.1007/s10858-010-9447-3 CrossRefGoogle Scholar
  32. Orekhov VY, Jaravine VA (2011) Analysis of non--uniformly sampled spectra with multi-dimensional decomposition. Prog Nucl Magn Reson Spectrosc 59:271–292CrossRefGoogle Scholar
  33. Qu X, Mayzel M, Cai J-F, Chen Z, Orekhov V (2014) Accelerated NMR spectroscopy with low-rank reconstruction. Angew Chem Int Ed. doi:10.1002/anie.201409291 Google Scholar
  34. Stanek J, Augustyniak R, Koźmiński W (2012) Suppression of sampling artefacts in high-resolution four-dimensional NMR spectra using signal separation algorithm. J Magn Reson 214:91–102. doi:10.1016/j.jmr.2011.10.009 CrossRefADSGoogle Scholar
  35. Szyperski T, Wider G, Bushweller JH, Wuthrich K (1993) Reduced dimensionality in triple-resonance NMR experiments. J Am Chem Soc 115:9307–9308. doi:10.1021/ja00073a064 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Haitham Hassanieh
    • 1
  • Maxim Mayzel
    • 2
  • Lixin Shi
    • 1
  • Dina Katabi
    • 1
  • Vladislav Yu Orekhov
    • 2
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Swedish NMR Centre at University of GothenburgGothenburgSweden

Personalised recommendations