Journal of Biomolecular NMR

, Volume 62, Issue 3, pp 281–290 | Cite as

Assignment of methyl NMR resonances of a 52 kDa protein with residue-specific 4D correlation maps

  • Subrata H. Mishra
  • Dominique P. FruehEmail author


Methyl groups have become key probes for structural and functional studies by nuclear magnetic resonance. However, their NMR signals cluster in a small spectral region and assigning their resonances can be a tedious process. Here, we present a method that facilitates assignment of methyl resonances from assigned amide groups. Calculating the covariance between sensitive methyl and amide 3D spectra, each providing correlations to Cα and Cβ separately, produces 4D correlation maps directly correlating methyl groups to amide groups. Optimal correlation maps are obtained by extracting residue-specific regions, applying derivative to the dimensions subject to covariance, and multiplying 4D maps stemming from different 3D spectra. The latter procedure rescues weak signals that may be missed in traditional assignment procedures. Using these covariance correlation maps, nearly all assigned isoleucine, leucine, and valine amide resonances of a 52 kDa nonribosomal peptide synthetase cyclization domain were paired with their corresponding methyl groups.


NMR resonance assignment Large proteins Methyl groups Nonribosomal peptide synthetases 



We thank Dr Lewis Kay for providing the pulse sequences of HMCMCGCB and HMCM(CG)CBCA, and Brad Harden, Scott Nichols and Andy Goodrich for carefully reading the manuscript. This research was supported by the National Institutes of Health (Grant GM 104257).

Supplementary material

10858_2015_9943_MOESM1_ESM.pdf (774 kb)
Supplementary material 1 (PDF 775 kb)


  1. Blinov KA, Larin NI, Kvasha MP, Moser A, Williams AJ, Martin GE (2005) Analysis and elimination of artifacts in indirect covariance NMR spectra via unsymmetrical processing. Magn Reson Chem 43:999–1007. doi: 10.1002/mrc.1674 CrossRefGoogle Scholar
  2. Bloudoff K, Rodionov D, Schmeing TM (2013) Crystal structures of the first condensation domain of CDA synthetase suggest conformational changes during the synthetic cycle of nonribosomal peptide synthetases. J Mol Biol 425:3137–3150. doi: 10.1016/j.jmb.2013.06.003 CrossRefGoogle Scholar
  3. Bruner SD, Weber T, Kohli RM, Schwarzer D, Marahiel MA, Walsh CT, Stubbs MT (2002) Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure (Camb) 10:301–310CrossRefGoogle Scholar
  4. Brüschweiler R (2004) Theory of covariance nuclear magnetic resonance spectroscopy. J Chem Phys 121:409–414ADSCrossRefGoogle Scholar
  5. Brüschweiler R, Zhang F (2004) Covariance nuclear magnetic resonance spectroscopy. J Chem Phys 120:5253–5260ADSCrossRefGoogle Scholar
  6. Chen K, Delaglio F, Tjandra N (2010) A practical implementation of cross-spectrum in protein backbone resonance assignment. J Magn Reson 203:208–212. doi: 10.1016/j.jmr.2009.12.018 ADSCrossRefGoogle Scholar
  7. Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496CrossRefGoogle Scholar
  8. Frueh DP (2014) Practical aspects of NMR signal assignment in larger and challenging proteins. Prog Nucl Magn Reson Spectrosc 78:47–75. doi: 10.1016/j.pnmrs.2013.12.001 CrossRefGoogle Scholar
  9. Frueh DP, Arthanari H, Koglin A, Vosburg DA, Bennett AE, Walsh CT, Wagner G (2008) Dynamic thiolation-thioesterase structure of a non-ribosomal peptide synthetase. Nature 454:903–906. doi: 10.1038/nature07162 ADSCrossRefGoogle Scholar
  10. Gardner KH, Kay LE (1997) Production and incorporation of 15N, 13C, 2H (1H-1 methyl) isoleucine into proteins for multidimensional NMR studies. J Am Chem Soc 119:7599–7600CrossRefGoogle Scholar
  11. Gelis I, Bonvin AM, Keramisanou D, Koukaki M, Gouridis G, Economou A, Kalodimos CG (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769. doi: 10.1016/j.cell.2007.09.039 CrossRefGoogle Scholar
  12. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374CrossRefGoogle Scholar
  13. Gouridis G, Karamanou S, Gelis I, Kalodimos CG, Economou A (2009) Signal peptides are allosteric activators of the protein translocase. Nature 462:363–367ADSCrossRefGoogle Scholar
  14. Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 3:185–204Google Scholar
  15. Gulick AM (2009) Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem Biol 4:811–827. doi: 10.1021/cb900156h CrossRefGoogle Scholar
  16. Guo C, Tugarinov V (2010) Selective 1H-13C NMR spectroscopy of methyl groups in residually protonated samples of large proteins. J Biomol NMR 46:127–133. doi: 10.1007/s10858-009-9393-0 CrossRefGoogle Scholar
  17. Harden BJ, Nichols SR, Frueh DP (2014) Facilitated assignment of large protein NMR signals with covariance sequential spectra using spectral derivatives. J Am Chem Soc 136:13106–13109. doi: 10.1021/ja5058407 CrossRefGoogle Scholar
  18. Kay LE, Xu GY, Singer AU, Muhandiram DR, Formankay JD (1993) A Gradient-enhanced HCCH-TOCSY experiment for recording side-chain 1H and 13C correlations in H2O samples of proteins. J Magn Reson Ser B 101:333–337. doi: 10.1006/jmrb.1993.1053 ADSCrossRefGoogle Scholar
  19. Keating TA, Miller DA, Walsh CT (2000) Expression, purification, and characterization of HMWP2, a 229 kDa, six domain protein subunit of yersiniabactin synthetase. Biochemistry 39:4729–4739CrossRefGoogle Scholar
  20. Koglin A et al (2006) Conformational switches modulate protein interactions in peptide antibiotic synthetases. Science 312:273–276ADSCrossRefGoogle Scholar
  21. Kupce E, Freeman R (2006) Hyperdimensional NMR spectroscopy. J Am Chem Soc 128:6020–6021. doi: 10.1021/ja0609598 CrossRefGoogle Scholar
  22. Lescop E, Brutscher B (2007) Hyperdimensional protein NMR spectroscopy in peptide-sequence space. J Am Chem Soc 129:11916–11917. doi: 10.1021/ja0751577 CrossRefGoogle Scholar
  23. Matlab reference guide (1992). Natick, MAGoogle Scholar
  24. Mishra SH, Harden BJ, Frueh DP (2014) A 3D time-shared NOESY experiment designed to provide optimal resolution for accurate assignment of NMR distance restraints in large proteins. J Biomol NMR 60:265–274. doi: 10.1007/s10858-014-9873-8 CrossRefGoogle Scholar
  25. Mootz HD, Schwarzer D, Marahiel MA (2002) Ways of assembling complex natural products on modular nonribosomal peptide synthetases. Chembiochem 3:490–504. doi: 10.1002/1439-7633(20020603)3:6<490:AID-CBIC490>3.0.CO;2-N CrossRefGoogle Scholar
  26. Otten R, Chu B, Krewulak KD, Vogel HJ, Mulder FA (2010) Comprehensive and cost-effective NMR spectroscopy of methyl groups in large proteins. J Am Chem Soc 132:2952–2960. doi: 10.1021/ja907706a CrossRefGoogle Scholar
  27. Ruschak AM, Religa TL, Breuer S, Witt S, Kay LE (2010) The proteasome antechamber maintains substrates in an unfolded state. Nature 467:868–871. doi: 10.1038/nature09444 ADSCrossRefGoogle Scholar
  28. Saio T, Guan X, Rossi P, Economou A, Kalodimos CG (2014) Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science 344:1250494. doi: 10.1126/science.1250494 CrossRefGoogle Scholar
  29. Sheppard D, Guo C, Tugarinov V (2009) Methyl-detected ‘out-and-back’ NMR experiments for simultaneous assignments of Alaβ and Ileγ2 methyl groups in large proteins. J Biomol NMR 43:229–238. doi: 10.1007/s10858-009-9305-3 CrossRefGoogle Scholar
  30. Short T, Alzapiedi L, Brüschweiler R, Snyder D (2011) A covariance NMR toolbox for MATLAB and OCTAVE. J Magn Reson 209:75–78. doi: 10.1016/j.jmr.2010.11.018 ADSCrossRefGoogle Scholar
  31. Snyder DA, Brüschweiler R (2009) Generalized indirect covariance NMR formalism for establishment of multidimensional spin correlations. J Phys Chem A 113:12898–12903. doi: 10.1021/jp9070168 CrossRefGoogle Scholar
  32. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622. doi: 10.1038/nature05512 CrossRefGoogle Scholar
  33. Tanovic A, Samel SA, Essen LO, Marahiel MA (2008) Crystal structure of the termination module of a nonribosomal peptide synthetase. Science 321:659–663ADSCrossRefGoogle Scholar
  34. Trbovic N, Smirnov S, Zhang F, Bruschweiler R (2004) Covariance NMR spectroscopy by singular value decomposition. J Magn Reson 171:277–283ADSCrossRefGoogle Scholar
  35. Tugarinov V, Kay LE (2003) Ile, Leu, and Val methyl assignments of the 723-residue malate synthase G using a new labeling strategy and novel NMR methods. J Am Chem Soc 125:13868–13878CrossRefGoogle Scholar
  36. Tugarinov V, Kay LE (2005) Methyl groups as probes of structure and dynamics in NMR studies of high-molecular-weight proteins. Chembiochem 6:1567–1577. doi: 10.1002/cbic.200500110 CrossRefGoogle Scholar
  37. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428CrossRefGoogle Scholar
  38. Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303:1805–1810ADSCrossRefGoogle Scholar
  39. Zhang F, Bruschweiler R (2004) Indirect covariance NMR spectroscopy. J Am Chem Soc 126:13180–13181CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Biophysics and Biophysical ChemistryJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations