Journal of Biomolecular NMR

, Volume 62, Issue 1, pp 7–15 | Cite as

MAS solid state NMR of proteins: simultaneous 15N–13CA and 15N–13CO dipolar recoupling via low-power symmetry-based RF pulse schemes

  • Christian Herbst
  • Peter Bellstedt
  • Matthias Görlach
  • Ramadurai Ramachandran
Communication

Abstract

The generation of efficient RNnνs,νk symmetry-based low-power RF pulse schemes for simultaneous 15N–13CA and 15N–13CO dipolar recoupling is demonstrated. The method involves mixing schemes employing phase and amplitude-modulated dual band-selective 180° pulses as basic “R” element and tailoring of the RF field-modulation profile of the 180° pulses so as to obtain efficient magnetisation transfer characteristics over the resonance offset range of the nuclei involved. Mixing schemes leading to simultaneous 15N–13CA and 15N–13CO dipolar recoupling would permit the one-shot acquisition of different chemical shift correlation spectra that are typically utilized for protein backbone resonance assignments and thereby save data acquisition time. At representative MAS frequencies the efficacies of the mixing schemes presented here have been experimentally demonstrated via the simultaneous acquisition of {3D CONH and 3D CANH}, {3D CONH and 3D CO(CA)NH} and {3D CONH, 3D CANH, 3D CO(CA)NH and 3D CA(CO)NH} spectra generated via the magnetisation transfer pathways 1H → 13CO → 15N → 1H (CONH), 1H → 13CA → 15N → 1H (CANH) and 1H → 13CO → 13CA → 15N → 1H (CO(CA)NH) and 1H → 13CA → 13CO → 15N → 1H (CA(CO)NH).

Keywords

MAS solids state NMR Symmetry-based mixing Protein resonance assignment Dipolar recoupling Chemical shift correlation 

Supplementary material

10858_2015_9910_MOESM1_ESM.pdf (593 kb)
Supplementary material 1 (PDF 593 kb)

References

  1. Bak M, Nielsen NC (1997) REPULSION, a novel approach to efficient powder averaging in solid-state NMR. J Magn Reson 125(1):132–139CrossRefADSGoogle Scholar
  2. Baldus M (2002) Correlation experiments for assignment and structure elucidation of immobilized polypeptides under magic angle spinning. Prog Nucl Magn Reson Spectrosc 41(1–2):1–47CrossRefGoogle Scholar
  3. Baldus M, Aneta TP, Herzfeld J, Robert GG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95(6):1197–1207 Taylor and FrancisCrossRefADSGoogle Scholar
  4. Barbet-Massin E, Pell AJ, Retel JS, Andreas LB, Jaudzems K, Franks WT et al (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136(35):12489–12497CrossRefGoogle Scholar
  5. Bellstedt P, Herbst C, Häfner S, Leppert J, Görlach M, Ramachandran R (2012) Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra. J Biomol NMR 54(4):325–335CrossRefGoogle Scholar
  6. Brinkmann A, Levitt MH (2001) Symmetry principles in the nuclear magnetic resonance of spinning solids: heteronuclear recoupling by generalized Hartmann-Hahn sequences. J Chem Phys 115(1):357–384 AIP PublishingCrossRefADSGoogle Scholar
  7. Cheng VB, Suzukawa HH, Wolfsberg M (1973) Investigations of a nonrandom numerical method for multidimensional integration. J Chem Phys 59(8):3992–3999 AIP PublishingCrossRefADSMathSciNetGoogle Scholar
  8. Herbst C, Herbst J, Carella M, Leppert J, Ohlenschläger O, Görlach M et al (2010) Broadband 15N–13C dipolar recoupling via symmetry-based RF pulse schemes at high MAS frequencies. J Biomol NMR 47(1):7–17CrossRefGoogle Scholar
  9. Herbst C, Herbst J, Leppert J, Ohlenschläger O, Görlach M, Ramachandran R (2011) Chemical shift correlation at high MAS frequencies employing low-power symmetry-based mixing schemes. J Biomol NMR 50(3):277–284CrossRefGoogle Scholar
  10. Knight MJ, Webber AL, Pell AJ, Guerry P, Barbet-Massin E, Bertini I et al (2011) Fast resonance assignment and fold determination of human superoxide dismutase by high-resolution proton-detected solid-state MAS NMR spectroscopy. Angew Chem Int Ed 50(49):11697–11701CrossRefGoogle Scholar
  11. Leppert J, Heise B, Ohlenschläger O, Görlach M, Ramachandran R (2003) Broadband RFDR with adiabatic inversion pulses. J Biomol NMR 26(1):13–24CrossRefGoogle Scholar
  12. Levitt MH (2007) Symmetry-based pulse sequences in magic-angle spinning solid-state NMR. eMagRes. Wiley, ChichesterGoogle Scholar
  13. Lewandowski JR, Dumez J-N, Akbey U, Lange S, Emsley L, Oschkinat H (2011) Enhanced resolution and coherence lifetimes in the solid-state NMR spectroscopy of perdeuterated proteins under ultrafast magic-angle spinning. J Phys Chem Lett 2(17):2205–2211CrossRefGoogle Scholar
  14. Linser R (2012) Backbone assignment of perdeuterated proteins using long-range H/C-dipolar transfers. J Biomol NMR 52(2):151–158CrossRefGoogle Scholar
  15. Linser R, Fink U, Reif B (2008) Proton-detected scalar coupling based assignment strategies in MAS solid-state NMR spectroscopy applied to perdeuterated proteins. J Magn Reson 193(1):89–93CrossRefADSGoogle Scholar
  16. Linser R, Fink U, Reif B (2010a) Assignment of dynamic regions in biological solids enabled by spin-state selective NMR experiments. J Am Chem Soc 132(26):8891–8893CrossRefGoogle Scholar
  17. Linser R, Fink U, Reif B (2010b) Narrow carbonyl resonances in proton-diluted proteins facilitate NMR assignments in the solid-state. J Biomol NMR 47(1):1–6CrossRefGoogle Scholar
  18. Marchetti A, Jehle S, Felletti M, Knight MJ, Wang Y, Xu Z-Q et al (2012) Backbone assignment of fully protonated solid proteins by 1H detection and ultrafast magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 51(43):10756–10759CrossRefGoogle Scholar
  19. McDermott A, Polenova T, Böckmann A, Zilm KW, Paulson EK, Martin RW et al (2000) Partial NMR assignments for uniformly (13C, 15 N)-enriched BPTI in the solid state. J Biomol NMR 16(3):209–219CrossRefGoogle Scholar
  20. Pauli J, Baldus M, van Rossum B, de Groot H, Oschkinat H (2001) Backbone and side-chain13c and15 N signal assignments of the α-spectrin SH3 domain by magic angle spinning solid-state NMR at 17.6 Tesla. ChemBioChem 2(4):272–281CrossRefGoogle Scholar
  21. States DJ, Haberkorn RA, Ruben DJ (1982) A two-dimensional nuclear overhauser experiment with pure absorption phase in four quadrants. J Magn Reson 48(2):286–292ADSGoogle Scholar
  22. van Rossum B-J, Castellani F, Pauli J, Rehbein K, Hollander J, de Groot HJM et al (2003) Assignment of amide proton signals by combined evaluation of HN, NN and HNCA MAS-NMR correlation spectra. J Biomol NMR 25(3):217–223CrossRefGoogle Scholar
  23. Veshtort M, Griffin RG (2006) SPINEVOLUTION: a powerful tool for the simulation of solid and liquid state NMR experiments. J Magn Reson 178(2):248–282CrossRefADSGoogle Scholar
  24. Ward ME, Shi L, Lake E, Krishnamurthy S, Hutchins H, Brown LS et al (2011) Proton-detected solid-state NMR reveals intramembrane polar networks in a seven-helical transmembrane protein proteorhodopsin. J Am Chem Soc 133(43):17434–17443CrossRefGoogle Scholar
  25. Zhang ZZ, Miao YY, Liu XX, Yang JJ, Li CC, Deng FF et al (2012) Dual-band selective double cross polarization for heteronuclear polarization transfer between dilute spins in solid-state MAS NMR. J Magn Reson 31(217):92–99CrossRefADSGoogle Scholar
  26. Zhou DH, Rienstra CM (2008) High-performance solvent suppression for proton detected solid-state NMR. J Magn Reson 192(1):167–172CrossRefADSGoogle Scholar
  27. Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C et al (2007a) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 46(44):8380–8383. doi:10.1002/ange.200702905/full CrossRefGoogle Scholar
  28. Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM (2007b) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129(38):11791–11801CrossRefGoogle Scholar
  29. Zhou DH, Nieuwkoop AJ, Berthold DA, Comellas G, Sperling LJ, Tang M et al (2012) Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy. J Biomol NMR 54(3):291–305CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Christian Herbst
    • 1
    • 2
  • Peter Bellstedt
    • 1
  • Matthias Görlach
    • 1
  • Ramadurai Ramachandran
    • 1
  1. 1.Research group Biomolecular NMR SpectroscopyLeibniz Institute for Age Research, Fritz Lipmann InstituteJenaGermany
  2. 2.Department of Physics, Faculty of ScienceUbon Ratchathani UniversityUbon RatchathaniThailand

Personalised recommendations