Journal of Biomolecular NMR

, Volume 62, Issue 1, pp 25–29 | Cite as

Fitting alignment tensor components to experimental RDCs, CSAs and RQCs

Article

Abstract

Residual dipolar couplings, chemical shift anisotropies and quadrupolar couplings provide information about the orientation of inter-spin vectors and the anisotropic contribution of the local environment to the chemical shifts of nuclei, respectively. Structural interpretation of these observables requires parameterization of their angular dependence in terms of an alignment tensor. We compare and evaluate two algorithms for generating the optimal alignment tensor for a given molecular structure and set of experimental data, namely SVD (Losonczi et al. in J Magn Reson 138(2):334–342, 1999), which scales as \({{\mathcal {O}}(n^2)}\), and the linear least squares algorithm (Press et al. in Numerical recipes in C. The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge, 1997), which scales as \({{\mathcal {O}}(n)}\).

Keywords

Residual dipolar coupling Chemical shift anisotropy  Residual quadrupolar coupling Alignment tensor Nuclear magnetic resonance 

References

  1. Blackledge M (2005) Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Prog Nucl Magn Reson Spectrosc 46(1):23–61. doi:10.1016/j.pnmrs.2004.11.002 CrossRefGoogle Scholar
  2. Eichenberger AP, Allison JR, Dolenc J, Geerke DP, Horta BAC, Meier K, Oostenbrink C, Schmid N, Steiner D, Wang D, van Gunsteren WF (2011) The gromos++ software for the analysis of biomolecular simulation trajectories. J Chem Theory Comput 7:3379–3390. doi:10.1021/ct2003622 CrossRefGoogle Scholar
  3. Galassi M, Davies J, Theiler J, Gough B, Jungman G, Alken P, Booth M, Rossi F, Ulerich R (2009) GNU scientific library reference manual, 3rd edn. Network Theory LtdGoogle Scholar
  4. Golub GH, van Loan CF (2012) Matrix computations, 4th edn. Johns Hopkins University Press, BaltimoreGoogle Scholar
  5. Hess B, Scheek RM (2003) Orientation restraints in molecular dynamics simulations using time and ensemble averaging. J Magn Reson 164(1):19–27. doi:10.1016/S1090-7807(03)00178-2 CrossRefADSGoogle Scholar
  6. Kunz APE, Allison JR, Geerke DP, Horta BAC, Hünenberger PH, Riniker S, Schmid N (2012) New functionalities in the gromos biomolecular simulation software. J Comput Chem 33:340–353. doi:10.1002/jcc.21954 CrossRefGoogle Scholar
  7. Lipsitz RS, Tjandra N (2004) Residual dipolar couplings in nmr structure analysis. Ann Rev Biophys Biomol Struct 33(1):387–413. doi:10.1146/annurev.biophys.33.110502.140306 CrossRefGoogle Scholar
  8. Losonczi JA, Andrec M, Fischer MW, Prestegard JH (1999) Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson 138(2):334–342. doi:10.1006/jmre.1999.1754 CrossRefADSGoogle Scholar
  9. Mason J (1993) Conventions for the reporting of nuclear magnetic shielding (or shift) tensors suggested by participants in the NATO ARW on NMR shielding constants at the university of maryland, college park, July 1992. Solid State Nucl Magn Reson 2(5):285–288. doi:10.1016/0926-2040(93)90010-K CrossRefGoogle Scholar
  10. Mehring M (1983) Principles of high resolution NMR in solids, 2nd edn. Springer, Berlin. doi:10.1007/978-3-642-68756-3 CrossRefGoogle Scholar
  11. Moltke S, Grzesiek S (1999) Structural constraints from residual tensorial couplings in high resolution NMR without an explicit term for the alignment tensor. J Biomol NMR doi:10.1023/A:1008309630377
  12. Ottiger M, Bax A (1998) Determination of relative N–\({\text{ H }}^{\rm N}\), N–C′, C\(^\alpha \)–C′, and C\(^\alpha \)–H\(^\alpha \) effective bond lengths in a protein by NMR in a dilute liquid crystalline phase. J Am Chem Soc 120(12):334–341. doi:10.1021/ja9826791 Google Scholar
  13. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1997) Numerical recipes in C. The art of scientific computing, 2nd edn. Cambridge, Cambridge University PressGoogle Scholar
  14. Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104(8):3519–3540. doi:10.1021/cr030419i CrossRefGoogle Scholar
  15. Sass J, Cordier F, Hoffmann A, Rogowski M, Cousin A, Omichinski JG, Löwen H, Grzesiek S (1999) Purple membrane induced alignment of biological macromolecules in the magnetic field. J Am Chem Soc 121(10):2047–2055. doi:10.1021/ja983887w CrossRefGoogle Scholar
  16. Saupe A (1964) Kernresonanzen in kristallinen Flüssigkeiten und in kristallinflüssigen Lösungen. Zeitung für Naturforschung 19a:161–171ADSGoogle Scholar
  17. Schmid N, Allison JR, Dolenc J, Eichenberger AP, Kunz APE, van Gunsteren WF (2011) Biomolecular structure refinement using the gromos simulation software. J Biomol NMR 51:265–281. doi:10.1007/s10858-011-9534-0 CrossRefGoogle Scholar
  18. Schmid N, Christ CD, Christen M, Eichenberger AP, van Gunsteren WF (2012) Architecture, implementation and parallelisation of the gromos software for biomolecular simulation. Comput Phys Commun 183:890–903CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced StudyMassey University AucklandAucklandNew Zealand
  2. 2.Centre for Theoretical Chemistry and Physics, Institute of Natural and Mathematical SciencesMassey University AucklandAucklandNew Zealand

Personalised recommendations