Skip to main content
Log in

19F-labeling of the adenine H2-site to study large RNAs by NMR spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

In comparison to proteins and protein complexes, the size of RNA amenable to NMR studies is limited despite the development of new isotopic labeling strategies including deuteration and ligation of differentially labeled RNAs. Due to the restricted chemical shift dispersion in only four different nucleotides spectral resolution remains limited in larger RNAs. Labeling RNAs with the NMR-active nucleus 19F has previously been introduced for small RNAs up to 40 nucleotides (nt). In the presented work, we study the natural occurring RNA aptamer domain of the guanine-sensing riboswitch comprising 73 nucleotides from Bacillus subtilis. The work includes protocols for improved in vitro transcription of 2-fluoroadenosine-5′-triphosphat (2F-ATP) using the mutant P266L of the T7 RNA polymerase. Our NMR analysis shows that the secondary and tertiary structure of the riboswitch is fully maintained and that the specific binding of the cognate ligand hypoxanthine is not impaired by the introduction of the 19F isotope. The thermal stability of the 19F-labeled riboswitch is not altered compared to the unmodified sequence, but local base pair stabilities, as measured by hydrogen exchange experiments, are modulated. The characteristic change in the chemical shift of the imino resonances detected in a 1H,15N-HSQC allow the identification of Watson–Crick base paired uridine signals and the 19F resonances can be used as reporters for tertiary and secondary structure transitions, confirming the potential of 19F-labeling even for sizeable RNAs in the range of 70 nucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alvarado LJ et al (2014) Regio-selective chemical-enzymatic synthesis of pyrimidine nucleotides facilitates RNA structure and dynamics studies. ChemBioChem 15:1573–1577. doi:10.1002/cbic.201402130

    Article  Google Scholar 

  • Appasamy D, Ramlan EI, Firdaus-Raih M (2013) Comparative sequence and structure analysis reveals the conservation and diversity of nucleotide positions and their associated tertiary interactions in the riboswitches. PLoS One. doi:10.1371/journal.pone.0073984

    Google Scholar 

  • Baldo JH, Hansen PE, Shriver JW, Sykes BD (1983) 2-Fluoro-Atp, a fluorinated Atp Analog: F-19 nuclear magnetic-resonance studies of the 2-fluoro-Adp. Myosin subfragment-1 complex. Can J Biochem Cell B 61:115–119

    Article  Google Scholar 

  • Batey RT, Inada M, Kujawinski E, Puglisi JD, Williamson JR (1992) Preparation of isotopically labeled ribonucleotides for multidimensional NMR-spectroscopy of RNA. Nucleic Acids Res 20:4515–4523. doi:10.1093/nar/20.17.4515

    Article  Google Scholar 

  • Batey RT, Gilbert SD, Montange RK (2004) Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature 432:411–415. doi:10.1038/nature03037

    Article  ADS  Google Scholar 

  • Battaglia MR, Buckingham AD, Williams JH (1981) The electric quadrupole-moments of benzene and hexafluorobenzene. Chem Phys Lett 78:420–423

    Article  ADS  Google Scholar 

  • Broom AD, Amarnath V, Vince R, Brownell J (1979) Poly(2-fluoroadenylic acid). The role of basicity in the stabilization of complementary helices. Biochim Biophys Acta 563:508–517

    Article  Google Scholar 

  • Buck J, Furtig B, Noeske J, Wohnert J, Schwalbe H (2007) Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution. Proc Natl Acad Sci USA 104:15699–15704. doi:10.1073/pnas.0703182104

    Article  ADS  Google Scholar 

  • Buck J, Noeske J, Wohnert J, Schwalbe H (2010) Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain. Nucleic Acids Res 38:4143–4153. doi:10.1093/nar/gkq138

    Article  Google Scholar 

  • Butcher SE, Allain FHT, Feigon J (2000) Determination of metal ion binding sites within the hairpin ribozyme domains by NMR. Biochemistry 39:2174–2182. doi:10.1021/Bi9923454

    Article  Google Scholar 

  • Carlomagno T, Amata I, Codutti L, Falb M, Fohrer J, Masiewicz P, Simon B (2013) Structural principles of RNA catalysis in a 2′–5′ lariat-forming ribozyme. J Am Chem Soc 135:4403–4411. doi:10.1021/Ja311868t

    Article  Google Scholar 

  • Cavaluzzi MJ, Borer PN (2004) Revised UV extinction coefficients for nucleoside-5′-monophosphates and unpaired DNA and RNA. Nucleic Acids Res. doi:10.1093/nar/gnh015

    Google Scholar 

  • Chowdhury S, Maris C, Allain FHT, Narberhaus F (2006) Molecular basis for temperature sensing by an RNA thermometer. EMBO J 25:2487–2497. doi:10.1038/sj.emboj.7601128

    Article  Google Scholar 

  • Christiansen LC, Schou S, Nygaard P, Saxild HH (1997) Xanthine metabolism in Bacillus subtilis: characterization of the xpt–pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J Bacteriol 179:2540–2550

    Google Scholar 

  • Codington JF, Fox JJ, Doerr IL (1964) Nucleosides. 18. Synthesis of 2]-fluorothymidine 2]-fluorodeoxyuridine + other 2]-halogeno-2]-deoxy nucleosides. J Org Chem 29:558–564. doi:10.1021/Jo01026a009

    Article  Google Scholar 

  • Davis JH, Tonelli M, Scott LG, Jaeger L, Williamson JR, Butcher SE (2005) RNA helical packing in solution: NMR structure of a 30 kDa GAAA tetraloop-receptor complex. J Mol Biol 351:371–382. doi:10.1016/j.jmb.2005.05.069

    Article  Google Scholar 

  • Dayie KT, Tolbert TJ, Williamson JR (1998) 3D C(CC)H TOCSY experiment for assigning protons and carbons in uniformly C-13- and selectively H-2-labeled RNA. J Magn Reson 130:97–101. doi:10.1006/jmre.1997.1286

    Article  ADS  Google Scholar 

  • D’Souza V, Dey A, Habib D, Summers MF (2004) NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus. J Mol Biol 337:427–442. doi:10.1015/j.jmb.2004.01.037

    Article  Google Scholar 

  • Duszczyk MM, Wutz A, Rybin V, Sattler M (2011) The Xist RNA A-repeat comprises a novel AUCG tetraloop fold and a platform for multimerization. RNA 17:1973–1982. doi:10.1261/Rna.2747411

    Article  Google Scholar 

  • Fauster K, Kreutz C, Micura R (2012) 2′-SCF3 uridine-a powerful label for probing structure and function of RNA by 19F NMR spectroscopy. Angew Chem Int Ed Engl 51:13080–13084. doi:10.1002/anie.201207128

    Article  Google Scholar 

  • Ferner J et al (2009) Structures of HIV TAR RNA-ligand complexes reveal higher binding stoichiometries. ChemBioChem 10:1490–1494. doi:10.1002/cbic.200900220

    Article  Google Scholar 

  • Furtig B, Richter C, Wohnert J, Schwalbe H (2003) NMR spectroscopy of RNA. Chembiochem 4:936–962. doi:10.1002/cbic.200300700

    Article  Google Scholar 

  • Furtig B, Richter C, Schell P, Wenter P, Pitsch S, Schwalbe H (2008) NMR-spectroscopic characterization of phosphodiester bond cleavage catalyzed by the minimal hammerhead ribozyme. RNA Biol 5:41–48

    Article  Google Scholar 

  • Garavis M et al (2014) Discovery of selective ligands for telomeric RNA G-quadruplexes (TERRA) through 19F-NMR based fragment screening. ACS Chem Biol 9:1559–1566. doi:10.1021/cb500100z

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141. doi:10.1016/0022-2364(91)90034-Q

    ADS  Google Scholar 

  • Graber D, Moroder H, Micura R (2008) 19F NMR spectroscopy for the analysis of RNA secondary structure populations. J Am Chem Soc 130:17230–17231. doi:10.1021/ja806716s

    Article  Google Scholar 

  • Granqvist L, Virta P (2014) 4′-C-[(4-trifluoromethyl-1H-1,2,3-triazol-1-yl)methyl]thymidine as a sensitive (19)F NMR sensor for the detection of oligonucleotide secondary structures. J Org Chem 79:3529–3536. doi:10.1021/jo500326j

    Article  Google Scholar 

  • Guillerez J, Lopez PJ, Proux F, Launay H, Dreyfus M (2005) A mutation in T7 RNA polymerase that facilitates promoter clearance. Proc Natl Acad Sci USA 102:5958–5963. doi:10.1073/pnas.0407141102

    Article  ADS  Google Scholar 

  • Horowitz J, Ou CN, Ishaq M (1974) Isolation and partial characterization of Escherichia coli valine transfer RNA with uridine-derived residues replaced by 5-fluorouridine. J Mol Biol 88:301–312

    Article  Google Scholar 

  • Houck-Loomis B, Durney MA, Salguero C, Shankar N, Nagle JM, Goff SP, D’Souza VM (2011) An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature 480:561–564. doi:10.1038/Nature10657

    ADS  Google Scholar 

  • Huang P, Plunkett W (1987) Phosphorolytic cleavage of 2-fluoroadenine from 9-beta-D-arabinofuranosyl-2-fluoroadenine by Escherichia-Coli: a pathway for 2-fluoro-Atp production. Biochem Pharmacol 36:2945–2950. doi:10.1016/0006-2952(87)90207-3

    Article  Google Scholar 

  • Keane SC et al (2015) Structure of the HIV-1 RNA packaging signal. Science 348:917–921. doi:10.1126/science.aaa9266

    Article  ADS  Google Scholar 

  • Kiviniemi A, Virta P (2010) Characterization of RNA invasion by (19)F NMR spectroscopy. J Am Chem Soc 132:8560–8562. doi:10.1021/ja1014629

    Article  Google Scholar 

  • Kiviniemi A, Virta P (2011) Synthesis of aminoglycoside-3′-conjugates of 2′-O-methyl oligoribonucleotides and their invasion to a 19F labeled HIV-1 TAR model. Bioconjug Chem 22:1559–1566. doi:10.1021/bc200101r

    Article  Google Scholar 

  • Kiviniemi A, Murtola M, Ingman P, Virta P (2013) Synthesis of fluorine-labeled peptide nucleic acid building blocks as sensors for the 19F NMR spectroscopic detection of different hybridization modes. J Org Chem 78:5153–5159. doi:10.1021/jo400014y

    Article  Google Scholar 

  • Kline PC, Serianni AS (1990) C-13-Enriched ribonucleosides: synthesis and application of C-13-H-1 and C-13-C-13 spin-coupling constants to assess furanose and N-glycoside bond conformations. J Am Chem Soc 112:7373–7381. doi:10.1021/Ja00176a043

    Article  Google Scholar 

  • Kosutic M et al (2014) Surprising base pairing and structural properties of 2′-trifluoromethylthio-modified ribonucleic acids. J Am Chem Soc 136:6656–6663. doi:10.1021/ja5005637

    Article  Google Scholar 

  • Kreutz C, Kahlig H, Konrat R, Micura R (2005) Ribose 2′-F labeling: a simple tool for the characterization of RNA secondary structure equilibria by 19F NMR spectroscopy. J Am Chem Soc 127:11558–11559. doi:10.1021/ja052844u

    Article  Google Scholar 

  • Kreutz C, Kahlig H, Konrat R, Micura R (2006) A general approach for the identification of site-specific RNA binders by 19F NMR spectroscopy: proof of concept. Angew Chem Int Ed Engl 45:3450–3453. doi:10.1002/anie.200504174

    Article  Google Scholar 

  • Lescoute A, Westhof E (2006) The A-minor motifs in the decoding recognition process. Biochimie 88:993–999. doi:10.1016/j.biochi.2006.05.018

    Article  Google Scholar 

  • Levitt MH, Freeman R (1981) Composite pulse decoupling. J Magn Reson 43:502–507. doi:10.1016/0022-2364(81)90066-4

    ADS  Google Scholar 

  • Lombes T et al (2012) Investigation of RNA-ligand interactions by 19F NMR spectroscopy using fluorinated probes. Angew Chem Int Ed Engl 51:9530–9534. doi:10.1002/anie.201204083

    Article  Google Scholar 

  • Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586

    Article  Google Scholar 

  • Marchanka A, Simon B, Althoff-Ospelt G, Carlomagno T (2015) RNA structure determination by solid-state NMR spectroscopy. Nat Commun. doi:10.1038/Ncomms8024

    Google Scholar 

  • Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  Google Scholar 

  • Mori S, Abeygunawardana C, Johnson MO, van Zijl PC (1995) Improved sensitivity of HSQC spectra of exchanging protons at short interscan delays using a new fast HSQC (FHSQC) detection scheme that avoids water saturation. J Magn Reson B 108:94–98

    Article  Google Scholar 

  • Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043

    Article  Google Scholar 

  • Neuner S, Santner T, Kreutz C, Micura R (2015) The “speedy” synthesis of atom-specific N-15 imino/amido-labeled RNA. Chem-Eur J 21:11634–11643. doi:10.1002/chem.201501275

    Article  Google Scholar 

  • Nikonowicz EP, Sirr A, Legault P, Jucker FM, Baer LM, Pardi A (1992) Preparation of C-13 and N-15 Labeled Rnas for Heteronuclear Multidimensional Nmr-Studies. Nucleic Acids Res 20:4507–4513. doi:10.1093/nar/20.17.4507

    Article  Google Scholar 

  • Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci USA 98:4899–4903. doi:10.1073/pnas.081082398

    Article  ADS  Google Scholar 

  • Noeske J, Richter C, Grundl MA, Nasiri HR, Schwalbe H, Wohnert J (2005) An intermolecular base triple as the basis of ligand specificity and affinity in the guanine- and adenine-sensing riboswitch RNAs. Proc Natl Acad Sci USA 102:1372–1377. doi:10.1073/pnas.0406347102

    Article  ADS  Google Scholar 

  • Olsen GL, Edwards TE, Deka P, Varani G, Sigurdsson ST, Drobny GP (2005) Monitoring tat peptide binding to TAR RNA by solid-state 31P-19F REDOR NMR. Nucleic Acids Res 33:3447–3454. doi:10.1093/nar/gki626

    Article  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2:661–665

    Article  Google Scholar 

  • Puffer B, Kreutz C, Rieder U, Ebert MO, Konrat R, Micura R (2009) 5-Fluoro pyrimidines: labels to probe DNA and RNA secondary structures by 1D 19F NMR spectroscopy. Nucleic Acids Res 37:7728–7740. doi:10.1093/nar/gkp862

    Article  Google Scholar 

  • Quant S et al (1994) Chemical synthesis of C-13-labeled monomers for the solid-phase and template controlled enzymatic-synthesis of DNA and RNA oligomers. Tetrahedron Lett 35:6649–6652. doi:10.1016/S0040-4039(00)73458-7

    Article  Google Scholar 

  • Reif B et al (1997) Structural comparison of oligoribonucleotides and their 2′-deoxy-2′-fluoro analogs by heteronuclear NMR spectroscopy. Helv Chim Acta 80:1952–1971. doi:10.1002/hlca.19970800614

    Article  Google Scholar 

  • Rinnenthal J, Klinkert B, Narberhaus F, Schwalbe H (2010) Direct observation of the temperature-induced melting process of the Salmonella fourU RNA thermometer at base-pair resolution. Nucleic Acids Res 38:3834–3847. doi:10.1093/nar/gkq124

    Article  Google Scholar 

  • Rinnenthal J, Buck J, Ferner J, Wacker A, Furtig B, Schwalbe H (2011) Mapping the landscape of RNA dynamics with NMR spectroscopy. Acc Chem Res 44:1292–1301. doi:10.1021/ar200137d

    Article  Google Scholar 

  • Sashital DG, Cornilescu G, Butcher SE (2004) U2-U6 RNA folding reveals a group II intron-like domain and a four-helix junction. Nat Struct Mol Biol 11:1237–1242. doi:10.1038/Nsmb863

    Article  Google Scholar 

  • Schwalbe H, Buck J, Furtig B, Noeske J, Wohnert J (2007) Structures of RNA switches: insight into molecular recognition and tertiary structure. Angew Chem Int Ed Engl 46:1212–1219. doi:10.1002/anie.200604163

    Article  Google Scholar 

  • Scott LG, Geierstanger BH, Williamson JR, Hennig M (2004) Enzymatic synthesis and F-19 NMR studies of 2-fluoroadenine-substituted RNA. J Am Chem Soc 126:11776–11777. doi:10.1021/Ja047556x

    Article  Google Scholar 

  • Serganov A et al (2004) Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem Biol 11:1729–1741. doi:10.1016/j.chembiol.2004.11.018

    Article  Google Scholar 

  • Shaka AJ, Barker PB, Freeman R (1985) Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 64:547–552. doi:10.1016/0022-2364(85)90122-2

    ADS  Google Scholar 

  • Sklenar V, Bax A (1987) Spin-echo water suppression for the generation of pure-phase two-dimensional NMR-spectra. J Magn Reson 74:469–479. doi:10.1016/0022-2364(87)90269-1

    ADS  Google Scholar 

  • Sklenar V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for H-1-N-15 Hsqc experiments optimized to retain full sensitivity. J Magn Reson Ser A 102:241–245. doi:10.1006/jmra.1993.1098

    Article  ADS  Google Scholar 

  • Staple DW, Butcher SE (2003) Solution structure of the HIV-1 frameshift inducing stem-loop RNA. Nucleic Acids Res 31:4326–4331. doi:10.1093/Nar/Gkg654

    Article  Google Scholar 

  • Suck D, Saenger W, Main P, Germain G, Declercq JP (1974) X-ray structure of 3′,5′-diacetyl-2′-deoxy-2′-fluorouridine: a pyrimidine nucleoside in the syn conformation. Biochim Biophys Acta 361:257–265

    Article  Google Scholar 

  • Thakur CS, Dayie TK (2012) Asymmetry of C-13 labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy. J Biomol NMR 52:65–77. doi:10.1007/s10858-011-9582-5

    Article  Google Scholar 

  • Wacker A, Buck J, Mathieu D, Richter C, Wohnert J, Schwalbe H (2011) Structure and dynamics of the deoxyguanosine-sensing riboswitch studied by NMR-spectroscopy. Nucleic Acids Res 39:6802–6812. doi:10.1093/nar/gkr238

    Article  Google Scholar 

  • Wacker A, Buck J, Richter C, Schwalbe H, Wohnert J (2012) Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches. RNA Biol 9:672–680. doi:10.4161/rna.20106

    Article  Google Scholar 

  • Wenter P, Reymond L, Auweter SD, Allain FHT, Pitsch S (2006) Short, synthetic and selectively C-13-labeled RNA sequences for the NMR structure determination of protein-RNA complexes. Nucleic Acids Res. doi:10.1093/nar/gkl427

    Google Scholar 

  • Yu C, Levy GC (1984) Two-dimensional heteronuclear NOE (HOESY) experiments: investigation of dipolar interactions between heteronuclei and nearby protons. J Am Chem Soc 106:6533–6537. doi:10.1021/Ja00334a013

    Article  Google Scholar 

  • Zhao C, Devany M, Greenbaum NL (2014) Measurement of chemical exchange between RNA conformers by (19)F NMR. Biochem Biophys Res Commun 453:692–695. doi:10.1016/j.bbrc.2014.09.075

    Article  Google Scholar 

Download references

Acknowledgments

We thank E. Stirnal for HPLC purification of RNAs. The work was supported within the DFG-funded collaborative research center: SFB902. H.S. is member of the DFG-funded cluster of excellence: macromolecular complexes. BMRZ is supported by the state of Hesse.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Fürtig or H. Schwalbe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sochor, F., Silvers, R., Müller, D. et al. 19F-labeling of the adenine H2-site to study large RNAs by NMR spectroscopy. J Biomol NMR 64, 63–74 (2016). https://doi.org/10.1007/s10858-015-0006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-015-0006-9

Keywords

Navigation