Advertisement

Journal of Biomolecular NMR

, Volume 59, Issue 3, pp 147–159 | Cite as

Automatic NOESY assignment in CS-RASREC-Rosetta

  • Oliver F. Lange
Article

Abstract

We have developed an approach for simultaneous structure calculation and automatic Nuclear Overhauser Effect (NOE) assignment to solve nuclear magnetic resonance (NMR) structures from unassigned NOESY data. The approach, autoNOE-Rosetta, integrates Resolution Adapted Structural RECombination (RASREC) Rosetta NMR calculations with algorithms for automatic NOE assignment. The method was applied to two proteins in the 15–20 kDa size range for which both, NMR and X-ray data, is available. The autoNOE-Rosetta calculations converge for both proteins and yield accurate structures with an RMSD of 1.9 Å to the X-ray reference structures. The method greatly expands the radius of convergence for automatic NOE assignment, and should be broadly useful for NMR structure determination.

Keywords

Nuclear magnetic resonance Automatic NOE assignment Structure determination 

Notes

Acknowledgments

I am indebted to the work of the Northeast Structural Genomics Consortium, which has made available NMR data sets for a large number of proteins. Furthermore, I have to thank Peter Güntert and Paolo Rossi for many helpful discussions. This work was supported by DFG grant LA 1817/3-1.

Supplementary material

10858_2014_9833_MOESM1_ESM.pdf (2 mb)
Supplementary material 1 (PDF 2018 kb)

References

  1. Bernard A, Vranken WF, Bardiaux B, Nilges M, Malliavin TE (2011) Bayesian estimation of NMR restraint potential and weight: a validation on a representative set of protein structures. Proteins 79:1525–1537CrossRefGoogle Scholar
  2. Bowers P, Strauss C, Baker D (2000) De novo protein structure determination using sparse NMR data. J Biomol NMR 18:311–318CrossRefGoogle Scholar
  3. Bradley P, Baker D (2006) Improved beta-protein structure prediction by multilevel optimization of nonlocal strand pairings and local backbone conformation. Proteins 65:922–929CrossRefGoogle Scholar
  4. Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Cryst D 54:905–921CrossRefGoogle Scholar
  5. Doreleijers JF, Sousa da Silva AW, Krieger E, Nabuurs SB, Spronk CAEM, Stevens TJ, Vranken WF, Vriend G, Vuister GW (2012) CING: an integrated residue-based structure validation program suite. J Biomol NMR 54:267–283CrossRefGoogle Scholar
  6. Güntert P, Braun W, Wüthrich K (1991) Efficient computation of three-dimensional protein structures in solution from nuclear magnetic resonance data using the program DIANA and the supporting programs CALIBA, HABAS and GLOMSA. J Mol Biol 217:517–530CrossRefGoogle Scholar
  7. Herrmann T, Guntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227CrossRefGoogle Scholar
  8. Huang YJ, Swapna GVT, Rajan PK, Ke H, Xia B, Shukla K, Inouye M, Montelione GT (2003) Solution NMR structure of ribosome-binding factor A (RbfA), a cold-shock adaptation protein from Escherichia coli. J Mol Biol 327:521–536CrossRefGoogle Scholar
  9. Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368ADSCrossRefGoogle Scholar
  10. Lange OF, Baker D (2012) Resolution-adapted recombination of structural features significantly improves sampling in restraint-guided structure calculation. Proteins 80:884–895CrossRefGoogle Scholar
  11. Lange OF, Rossi P, Sgourakis NG, Song Y, Lee H-W, Aramini JM, Ertekin A, Xiao R, Acton TB, Montelione GT et al (2012) Determination of solution structures of proteins up to 40 kDa using CS-Rosetta with sparse NMR data from deuterated samples. Proc Natl Acad Sci USA 109:10873–10878ADSCrossRefGoogle Scholar
  12. Linge JP, Habeck M, Rieping W, Nilges M (2003) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19:315–316CrossRefGoogle Scholar
  13. Linge JP, Habeck M, Rieping W, Nilges M (2004) Correction of spin diffusion during iterative automated NOE assignment. J Magn Reson 167:334–342ADSCrossRefGoogle Scholar
  14. Mao B, Guan R, Montelione GT (2011) Improved technologies now routinely provide protein NMR structures useful for molecular replacement. Structure 19:757–766CrossRefGoogle Scholar
  15. Nilges M (1993) A calculation strategy for the structure determination of symmetric dimers by 1H NMR. Proteins 17:297–309CrossRefGoogle Scholar
  16. Nilges M, Macias MJ, Odonoghue SI, Oschkinat H (1997) Automated NOESY interpretation with ambiguous distance restraints: the refined NMR solution structure of the pleckstrin homology domain from beta-spectrin. J Mol Biol 269:408–422CrossRefGoogle Scholar
  17. Raman S, Huang YJ, Mao B, Rossi P, Aramini JM, Liu G, Montelione GT, Baker D (2010a) Accurate automated protein NMR structure determination using unassigned NOESY data. J Am Chem Soc 132:202–207CrossRefGoogle Scholar
  18. Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini JM, Liu G, Ramelot TA, Eletsky A, Szyperski T et al (2010b) NMR structure determination for larger proteins using backbone-only data. Science 327:1014–1018ADSCrossRefGoogle Scholar
  19. Rohl CA, Baker D (2002) De novo determination of protein backbone structure from residual dipolar couplings using Rosetta. J Am Chem Soc 124:2723–2729CrossRefGoogle Scholar
  20. Rohl CA, Strauss CEM, Misura KMS, Baker D (2004) Protein structure prediction using Rosetta. Meth Enzymol 383:66–93CrossRefGoogle Scholar
  21. Shen Y, Lange OF, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690ADSCrossRefGoogle Scholar
  22. van der Schot G, Zhang Z, Vernon R, Shen Y, Vranken WF, Baker D, Bonvin AMJJ, Lange OF (2013) Improving 3D structure prediction from chemical shift data. J Biomol NMR 57:27–35CrossRefGoogle Scholar
  23. Vernon R, Shen Y, Baker D, Lange OF (2013) Improved chemical shift based fragment selection for CS-Rosetta using Rosetta3 fragment picker. J Biomol NMR 57:117–127CrossRefGoogle Scholar
  24. Warner LR, Varga K, Lange OF, Baker SL, Baker D, Sousa MC, Pardi A (2011) Structure of the BamC two-domain protein obtained by Rosetta with a limited NMR data set. J Mol Biol 411:83–95CrossRefGoogle Scholar
  25. Wüthrich K (1986) NMR of proteins and nucleic acidsGoogle Scholar
  26. Zhang Z, Porter J, Lange OF (2014) Robust and highly accurate automatic NOE assignment and structure determination with Rosetta. J Biomol NMR acceptedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Biomolecular NMR and Munich Center for Integrated Protein Science, Department ChemieTechnische Universität MünchenGarchingGermany
  2. 2.Institute of Structural BiologyHelmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations