Abstract
The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new “redox” approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-13C] acetate does not label α carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-13C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA–CO coupling in the backbone should improve the resolution of NCACX spectra.
Similar content being viewed by others
References
Anderson D, Becktel W, Dahlquist F (1990) pH-Induced denaturation of proteins: a single salt bridge contributes 3–5 kcal/mol to the free energy of folding of T4 lysozyme. Biochemistry 29(9):2403–2408
Bayro MJ, Ramachandran R, Caporini MA, Eddy MT, Griffin RG (2008) Radio frequency-driven recoupling at high magic-angle spinning frequencies: homonuclear recoupling sans heteronuclear decoupling. J Chem Phys 128(5):052321. doi:10.1063/1.2834736
Bayro M, Huber M, Ramachandran R, Davenport T, Meier B, Ernst M, Griffin R (2009) Dipolar truncation in magic-angle spinning NMR recoupling experiments. J Chem Phys 130:114506
Bayro MJ, Maly T, Birkett NR, Macphee CE, Dobson CM, Griffin RG (2010) High-Resolution MAS NMR Analysis of PI3-SH3 Amyloid Fibrils: Backbone Conformation and Implications for Protofilament Assembly and Structure. Biochemistry 49(35):7474–7484. doi:10.1021/bi100864t
Bayro M, Debelouchina G, Eddy M, Birkett N, MacPhee C, Rosay M, Maas W, Dobson C, Griffin R (2011) Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. J Am Chem Soc 133(35):13967–13974
Bennett AE, Rienstra CM, Auger M, Lakshmi KV, Griffin RG (1995) Heteronuclear decoupling in rotating solids. J Chem Phys 103(6):6951–6958
Bennett A, Rienstra C, Griffiths J, Zhen W, Lansbury P, Griffin R (1998) Homonuclear radio frequency-driven recoupling in rotating solids. J Chem Phys 108(22):9463–9479
Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420(6911):98–102
Castellani F, van Rossum B-J, Diehl A, Rehbein K, Oschkinat H (2003) Determination of solid-state NMR structures of proteins by means of three-dimensional 15N-13C-13C dipolar correlation spectroscopy and chemical shift analysis. Biochemistry 42(39):11476–11483. doi:10.1021/bi034903r
Chang S-L, Tjandra N (2005) Temperature dependence of protein backbone motion from carbonyl <sup>13</sup>C and amide <sup>15</sup>N NMR relaxation. J Magn Reson 174(1):43–53
Costa PR (1996) Spins, peptides, and Alzheimer’s disease: solid-state nuclear magnetic resonance investigations of amyloid peptide conformation. Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts
Dayie K, Wagner G (1997) Carbonyl carbon probe of local mobility in 13C, 15N-enriched proteins using high-resolution nuclear magnetic resonance. J Am Chem Soc 119(33):7797–7806
Debelouchina G, Platt G, Bayro M, Radford S, Griffin R (2010) Intermolecular alignment in β2-microglobulin amyloid fibrils. J Am Chem Soc 132(48):17077
Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293
Etzkorn M, Martell S, Andronesi OC, Seidel K, Engelhard M, Baldus M (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed 46(3):459–462. doi:10.1002/anie.200602139
Franks WT, Zhou DH, Wylie BJ, Money BG, Graesser DT, Frericks HL, Sahota G, Rienstra CM (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc 127(35):12291–12305. doi:10.1021/ja044497e
Franks WT, Wylie BJ, Stellfox SA, Rienstra CM (2006) Backbone conformational constraints in a microcrystalline U-15N-labeled protein by 3D dipolar-shift solid-state NMR spectroscopy. J Am Chem Soc 128(10):3154–3155. doi:10.1021/ja058292x
Goldbourt A, Day LA, McDermott AE (2007) Assignment of congested NMR spectra: carbonyl backbone enrichment via the Entner-Doudoroff pathway. J Magn Reson 189(2):157–165. doi:10.1016/j.jmr.2007.07.011
Helmus JJ, Surewicz K, Surewicz WK, Jaroniec CP (2010) Conformational flexibility of Y145Stop human prion protein amyloid fibrils probed by solid-state nuclear magnetic resonance spectroscopy. J Am Chem Soc 132(7):2393–2403. doi:10.1021/ja909827v
Higman VA, Flinders J, Hiller M, Jehle S, Markovic S, Fiedler S, Rossum B-J, Oschkinat H (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44(4):245–260. doi:10.1007/s10858-009-9338-7
Hiller M, Higman VA, Jehle S, van Rossum B-J, Kühlbrandt W, Oschkinat H (2008) [2,3-(13)C]-labeling of aromatic residues–getting a head start in the magic-angle-spinning NMR assignment of membrane proteins. J Am Chem Soc 130(2):408–409. doi:10.1021/ja077589n
Hing WA, Vega S, Schaefer J (1992) Transferred-echo double-resonance NMR. J Magn Reson 96(1):205–209
Hong M (1999) Determination of multiple phi-torsion angles in proteins by selective and extensive 13C labeling and two-dimensional solid-state NMR. J Magn Reson 139(2):389–401
Huang K, Ghose R, Flanagan J, Prestegard J (1999) Backbone dynamics of the N-terminal domain in E. coli DnaJ determined by 15N-and 13CO-relaxation measurements. Biochemistry 38(32):10567–10577
Jakoby WB (1971) Crystallization as a purification technique. Methods Enzymol 22:248–252
Janik R, Ritz E, Gravelle A, Shi L, Peng X, Ladizhansky V (2010) Interresidue carbonyl–carbonyl polarization transfer experiments in uniformly 13C, 15N-labeled peptides and proteins. J Magn Reson 203(1):177–184. doi:10.1016/j.jmr.2009.12.014
Jaroniec CP, Filip C, Griffin RG (2002) 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly (13)C, (15)N-labeled solids. J Am Chem Soc 124(36):10728–10742
Lee A, Flynn P, Wand A (1999) Comparison of 2H and 13C NMR relaxation techniques for the study of protein methyl group dynamics in solution. J Am Chem Soc 121(12):2891–2902
LeMaster DM, Kushlan DM (1996) Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J Am Chem Soc 118(39):9255–9264
Loquet A, Giller K, Becker S, Lange A (2010) Supramolecular interactions probed by 13C–13C solid-state NMR spectroscopy. J Am Chem Soc 132(43):15164–15166
Loquet A, Lv G, Giller K, Becker S, Lange A (2011) 13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J Am Chem Soc 133(13):4722–4725. doi:10.1021/ja200066s
Loquet A, Sgourakis N, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C, Kolbe M, Baker D, Becker S (2012) Atomic model of the type III secretion system needle. Nature 486:276–279
Lundstrom P, Teilum K, Carstensen T, Bezsonova I, Wiesner S, Hansen DF, Religa TL, Akke M, Kay LE (2007) Fractional 13C enrichment of isolated carbons using [1-13C]-or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone CŒ ± and side-chain methyl positions in proteins. J Biomol NMR 38(3):199–212
Lv G, Kumar A, Giller K, Orcellet ML, Riedel D, Fernández CO, Becker S, Lange A (2012) Structural comparison of mouse and human α-synuclein amyloid fibrils by solid-state NMR. J Mol Biol 420(1–2):99–111. doi:10.1016/j.jmb.2012.04.009
Mulder FAA, Akke M (2003) Carbonyl 13C transverse relaxation measurements to sample protein backbone dynamics. Magn Reson Chem 41(10):853–865. doi:10.1002/mrc.1252
Nieuwkoop A, Rienstra C (2010) Supramolecular protein structure determination by site-specific long-range intermolecular solid state NMR spectroscopy. J Am Chem Soc 132(22):7570–7571
Nieuwkoop AJ, Wylie BJ, Franks WT, Shah GJ, Rienstra CM (2009) Atomic resolution protein structure determination by three-dimensional transferred echo double resonance solid-state nuclear magnetic resonance spectroscopy. J Chem Phys 131(9):095101. doi:10.1063/1.3211103
Petkova A, Ishii Y, Balbach J, Antzutkin O, Leapman R, Delaglio F, Tycko R (2002) A structural model for Alzheimer’s β-amyloid fibrils based on experimental constraints from solid state NMR. Proc Natl Acad Sci 99(26):16742–16747
Petritis K, Chaimbault P, Elfakir C, Dreux M (2000) Parameter optimization for the analysis of underivatized protein amino acids by liquid chromatography and ionspray tandem mass spectrometry. J Chromatogr A 896(1):253–263
Qu J, Chen W, Luo G, Wang Y, Xiao S, Ling Z, Chen G (2002a) Rapid determination of underivatized pyroglutamic acid, glutamic acid, glutamine and other relevant amino acids in fermentation media by LC-MS-MS. Analyst 127(1):66–69
Qu J, Wang Y, Luo G, Wu Z, Yang C (2002b) Validated quantification of underivatized amino acids in human blood samples by volatile ion-pair reversed-phase liquid chromatography coupled to isotope dilution tandem mass spectrometry. Anal Chem 74(9):2034–2040
Schmidt HLF, Sperling LJ, Gao YG, Wylie BJ, Boettcher JM, Wilson SR, Rienstra CM (2007) Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction. J Phys Chem B 111(51):14362–14369. doi:10.1021/jp075531p
Shi L, Ahmed MAM, Zhang W, Whited G, Brown LS, Ladizhansky V (2009) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump–structural insights. J Mol Biol 386(4):1078–1093
Sperling LJ, Berthold DA, Sasser TL, Jeisy-Scott V, Rienstra CM (2010) Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. J Mol Biol 399(2):268–282. doi:10.1016/j.jmb.2010.04.012
Stanier R, Palleroni N, Doudoroff M (1966) The aerobic pseudomonas: a taxonomic study. J Gen Microbiol 43(2):159–271
Acknowledgments
We thank Dr. Alexei Belenky for assistance with LC–MS, Dr. Christopher Turner for assistance with the COSY and HSQC experiments, Loren Andreas, Dr. Marcel Reese, and Dr. Yongchao Su for assistance with the set up of the 800 MHz spectrometer, and Dr. Jochem Struppe for assistance with the TEDOR pulse program. Research reported in this publication was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health under award numbers EB001035, EB001960 and EB002026. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Eddy, M.T., Belenky, M., Sivertsen, A.C. et al. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR. J Biomol NMR 57, 129–139 (2013). https://doi.org/10.1007/s10858-013-9773-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10858-013-9773-3