Skip to main content
Log in

Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ~0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

SLN:

Sarcolipin

SERCA:

Sarcoplasmic reticulum Ca2+-ATPase

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

D6PC:

1,2-Dihexanoyl-sn-glycero-3-phosphocholine

POPC:

1-Palmitoyl, 2-oleyl-sn-glycero-3-phosphocholine

PISA:

Polarity index slant angle

DUMAS:

Dual acquisition magic angle spinning

MEIOSIS:

Multiple Experiments via Orphan Spin Operators

References

  • Asami S, Szekely K, Schanda P, Meier BH, Reif B (2012) Optimal degree of protonation for 1H detection of aliphatic sites in randomly deuterated proteins as a function of the MAS frequency. J Biomol NMR 54:155–168

    Article  Google Scholar 

  • Bertram R, Quine JR, Chapman MS, Cross TA (2000) Atomic refinement using orientational restraints from solid-state NMR. J Magn Reson 147:9–16

    Article  ADS  Google Scholar 

  • Buck B, Zamoon J, Kirby TL, DeSilva TM, Karim C, Thomas D, Veglia G (2003) Overexpression, purification, and characterization of recombinant Ca-ATPase regulators for high-resolution solution and solid-state NMR studies. Protein Expr Purif 30:253–261

    Article  Google Scholar 

  • Buffy JJ, Buck-Koehntop BA, Porcelli F, Traaseth NJ, Thomas DD, Veglia G (2006a) Defining the intramembrane binding mechanism of sarcolipin to calcium ATPase using solution NMR spectroscopy. J Mol Biol 358:420–429

    Article  Google Scholar 

  • Buffy JJ, Traaseth NJ, Mascioni A, Gor’kov PL, Chekmenev EY, Brey WW, Veglia G (2006b) Two-dimensional solid-state NMR reveals two topologies of sarcolipin in oriented lipid bilayers. Biochemistry 45:10939–10946

    Article  Google Scholar 

  • Cady SD, Mishanina TV, Hong M (2009) Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: the role of Ser31 in amantadine binding. J Mol Biol 385:1127–1141

    Article  Google Scholar 

  • Canlas CG, Ma D, Tang P, Xu Y (2008) Residual dipolar coupling measurements of transmembrane proteins using aligned low-q bicelles and high-resolution magic angle spinning NMR spectroscopy. J Am Chem Soc 130:13294–13300

    Article  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  ADS  Google Scholar 

  • Das BB, Nothnagel HJ, Lu GJ, Son WS, Tian Y, Marassi FM, Opella SJ (2012) Structure determination of a membrane protein in proteoliposomes. J Am Chem Soc 134:2047–2056

    Article  Google Scholar 

  • Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW et al (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35:W375–W383

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Demers JP, Chevelkov V, Lange A (2011) Progress in correlation spectroscopy at ultra-fast magic-angle spinning: basic building blocks and complex experiments for the study of protein structure and dynamics. Solid State Nucl Magn Reson 40:101–113

    Article  Google Scholar 

  • Dürr UHN, Gildenberg M, Ramamoorthy A (2012) The magic of bicelles lights up membrane protein structure. Chem Rev 112:6054–6074

    Article  Google Scholar 

  • Dvinskikh SV, Yamamoto K, Ramamoorthy A (2006) Heteronuclear isotropic mixing separated local field NMR spectroscopy. J Chem Phys 125:034507–034519

    Article  ADS  Google Scholar 

  • Giraud N, Blackledge M, Goldman M, Böckmann A, Lesage A, Penin F, Emsley L (2005) Quantitative analysis of backbone dynamics in a crystalline protein from nitrogen-15 spin-lattice relaxation. J Am Chem Soc 127:18190–18201

    Article  Google Scholar 

  • Goddard TG, Kneller DG (2008) SPARKY 3.114. University of California, San Francisco

    Google Scholar 

  • Gopinath T, Veglia G (2009) Sensitivity enhancement in static solid-state NMR experiments via single- and multiple-quantum dipolar coherences. J Am Chem Soc 131:5754–5756

    Article  Google Scholar 

  • Gopinath T, Veglia G (2010) Improved resolution in dipolar NMR spectra using constant time evolution PISEMA experiment. Chem Phys Lett 494:104–110

    Article  ADS  Google Scholar 

  • Gopinath T, Veglia G (2012a) Dual acquisition magic-angle spinning solid-state NMR-spectroscopy: simultaneous acquisition of multidimensional spectra of biomacromolecules. Angew Chem Int Ed 51:2731–2735

    Article  Google Scholar 

  • Gopinath T, Veglia G (2012b) 3D DUMAS: simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins. J Magn Reson 220:79–84

    Article  ADS  Google Scholar 

  • Gopinath T, Veglia G (2013) Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra. J Chem Phys 138:184201

    Article  ADS  Google Scholar 

  • Gopinath T, Traaseth NJ, Mote K, Veglia G (2010a) Sensitivity enhanced heteronuclear correlation spectroscopy in multidimensional solid-state NMR of oriented systems via chemical shift coherences. J Am Chem Soc 132:5357–5363

    Article  Google Scholar 

  • Gopinath T, Verardi R, Traaseth NJ, Veglia G (2010b) Sensitivity enhancement of separated local field experiments: application to membrane proteins. J Phys Chem B 114:5089–5095

    Article  Google Scholar 

  • Gopinath T, Mote KR, Veglia G (2011) Proton evolved local field solid-state nuclear magnetic resonance using Hadamard encoding: theory and application to membrane proteins. J Chem Phys 135:074503

    Article  Google Scholar 

  • Gor’kov PL, Chekmenev EY, Li C, Cotten M, Buffy JJ, Traaseth NJ, Veglia G, Brey WW (2007) Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J Magn Reson 185:77–93

    Article  ADS  Google Scholar 

  • Hall DA, Maus DC, Gerfen GJ, Inati SJ, Becerra LR, Dahlquist FW, Griffin RG (1997) Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276:930–932

    Article  Google Scholar 

  • Hu F, Luo W, Hong M (2010) Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR. Science 330:505–508

    Article  ADS  Google Scholar 

  • Ketchem RR, Hu W, Cross TA (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460

    Article  ADS  Google Scholar 

  • Knight MJ, Pell AJ, Bertini I, Felli IC, Gonnelli L, Pierattelli R, Herrmann T, Emsley L, Pintacuda G (2012) Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc Natl Acad Sci USA 109:11095–11100

    Article  ADS  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  Google Scholar 

  • Linser R, Bardiaux B, Higman V, Fink U, Reif B (2011) Structure calculation from unambiguous long-range amide and methyl 1H-1H distance restraints for a microcrystalline protein with MAS solid-state NMR spectroscopy. J Am Chem Soc 133:5905–5912

    Article  Google Scholar 

  • Lopez JJ, Kaiser C, Asami S, Glaubitz C (2009) Higher sensitivity through selective 13C excitation in solid-state NMR spectroscopy. J Am Chem Soc 131:15970–15971

    Article  Google Scholar 

  • Loquet A, Lv G, Giller K, Becker S, Lange A (2011) 13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. J Am Chem Soc 133:4722–4725

    Article  Google Scholar 

  • Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, Griesinger C et al (2012) Atomic model of the type III secretion system needle. Nature 486:276–279

    ADS  Google Scholar 

  • Marchetti A, Jehle S, Felletti M, Knight MJ, Wang Y, Xu ZQ, Park AY et al (2012) Backbone assignment of fully protonated solid proteins by 1H detection and ultrafast magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed 51:10756–10759

    Article  Google Scholar 

  • Mascioni A, Veglia G (2003) Theorotical analysis of residual dipolar couplings in regular secondary structure of proteins. J Am Chem Soc 125:12520–12526

    Article  Google Scholar 

  • Mascioni A, Karim C, Barany G, Thomas DD, Veglia G (2002) Structure and orientation of sarcolipin in lipid environments. Biochemistry 41:475–482

    Article  Google Scholar 

  • Maudsley AA, Ernst RR (1977) Indirect detection of magnetic resonance by heteronuclear two-dimensional spectroscopy. Chem Phys Lett 50:368–372

    Article  ADS  Google Scholar 

  • Mesleh MF, Veglia G, DeSilva TM, Marassi FM, Opella SJ (2002) Dipolar waves as NMR maps of protein structure. J Am Chem Soc 124:4206–4207

    Article  Google Scholar 

  • Miao Y, Qin H, Fu R, Sharma M, Can TV, Hung I, Luca S, Gor’kov PL, Brey WW, Cross TA (2012) M2 proton channel structural validation from full-length protein samples in synthetic bilayers and E. coli membranes. Angew Chem Int Ed 51:8383–8386

    Article  Google Scholar 

  • Mote KR, Gopinath T, Traaseth NJ, Kitchen J, Gor’kov PL, Brey WW, Veglia G (2011) Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers. J Biomol NMR 51:339–346

    Article  Google Scholar 

  • Nevzorov AA (2011) Orientational and motional narrowing of solid-state NMR lineshapes of uniaxially aligned membrane proteins. J Phys Chem B 115:15406–15414

    Article  Google Scholar 

  • Nevzorov AA, Opella SJ (2003) A “magic sandwich” pulse sequence with reduced offset dependence for high-resolution separated local field spectroscopy. J Magn Reson 164:182–186

    Article  ADS  Google Scholar 

  • Nielsen AB, Székely K, Gath J, Ernst M, Nielsen NC, Meier BH (2012) Simultaneous acquisition of PAR and PAIN spectra. J Biomol NMR 52:283–288

    Article  Google Scholar 

  • Nieuwkoop AJ, Rienstra CM (2010) Supramolecular protein structure determination by site-specific long-range intermolecular solid state NMR spectroscopy. J Am Chem Soc 132:7570–7571

    Article  Google Scholar 

  • Odermatt A, Becker S, Khanna VK, Kurzydlowski K, Leisner E, Pette D, MacLennan DH (1998) Sarcolipin regulates the activity of SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 273:12360–12369

    Article  Google Scholar 

  • Page RC, Cross TA (2008) Transmembrane helix uniformity examined by spectral mapping of torsion angles. Structure 16:787–797

    Article  Google Scholar 

  • Park SH, Marassi FM, Black D, Opella SJ (2010) Structure and dynamics of the membrane-bound form of Pf1 coat protein: implications of structural rearrangement for virus assembly. Biophys J 99:1465–1474

    Article  Google Scholar 

  • Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783

    Article  ADS  Google Scholar 

  • Reif B (2012) Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: implications for structure and dynamics. J Magn Reson 216:1–12

    Article  ADS  Google Scholar 

  • Reif B, Jaroniec CP, Rienstra CM, Hohwy M, Griffin RG (2001) 1H-1H MAS correlation spectroscopy and distance measurements in a deuterated peptide. J Magn Reson 151:320–327

    Article  ADS  Google Scholar 

  • Renault M, Pawsey S, Bos MP, Koers EJ, Nand D, Tommassen-van Boxtel R, Rosay M, Tommassen J, Maas WE, Baldus M (2012a) Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew Chem Int Ed 51:2998–3001

    Article  Google Scholar 

  • Renault M, Tommassen-van Boxtel R, Bos MP, Post JA, Tommassen J, Baldus M (2012b) Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci USA 109:4863–4868

    Article  ADS  Google Scholar 

  • Schmidt-Rohr K, Nanz D, Emsley L, Pines A (1994) NMR measurement of resolved heteronuclear dipole couplings in liquid crystals and lipids. J Phys Chem 98:6668–6670

    Article  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  ADS  Google Scholar 

  • Senes A, Chadi DC, Law PB, Walters RF, Nanda V, Degrado WF (2007) E(z), a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: derivation and applications to determining the orientation of transmembrane and interfacial helices. J Mol Biol 366:436–448

    Article  Google Scholar 

  • Sharma M, Yi M, Dong H, Qin H, Peterson E, Busath DD, Zhou HX, Cross TA (2010) Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330:509–512

    Article  ADS  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS +: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  Google Scholar 

  • Shi L, Cembran A, Gao J, Veglia G (2009a) Tilt and azimuthal angles of a transmembrane peptide: a comparison between molecular dynamics calculations and solid-state NMR data of sarcolipin in lipid membranes. Biophys J 96:3648–3662

    Article  Google Scholar 

  • Shi L, Traaseth NJ, Verardi R, Cembran A, Gao J, Veglia G (2009b) A refinement protocol to determine structure, topology, and depth of insertion of membrane proteins using hybrid solution and solid-state NMR restraints. J Biomol NMR 44:195–205

    Article  Google Scholar 

  • Shi L, Kawamura I, Jung K-H, Brown LS, Ladizhansky V (2011a) Conformation of a seven-helical transmembrane photosensor in the lipid environment. Angew Chem Int Ed 50:1302–1305

    Article  Google Scholar 

  • Shi L, Traaseth NJ, Verardi R, Gustavsson M, Gao J, Veglia G (2011b) Paramagnetic-based NMR restraints lift residual dipolar coupling degeneracy in multidomain detergent-solubilized membrane proteins. J Am Chem Soc 133:2232–2241

    Article  Google Scholar 

  • Sperling LJ, Berthold DA, Sasser TL, Jeisy-Scott V, Rienstra CM (2010) Assignment strategies for large proteins by magic-angle spinning NMR: the 21-kDa disulfide-bond-forming enzyme DsbA. J Mol Biol 399:268–282

    Article  Google Scholar 

  • Su Y, Waring AJ, Ruchala P, Hong M (2011) Structures of beta-hairpin antimicrobial protegrin peptides in lipopolysaccharide membranes: mechanism of gram selectivity obtained from solid-state nuclear magnetic resonance. Biochemistry 50:2072–2083

    Article  Google Scholar 

  • Takegoshi K, Nakamura S, Terao T (2001) Dipolar-assisted rotational resonance in magic-angle spinning NMR. Chem Phys Lett 344:631–637

    Article  ADS  Google Scholar 

  • Tamm LK (2005) Protein lipid interactions: from membrane domains to cellular networks. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany

    Book  Google Scholar 

  • Tang M, Sperling LJ, Berthold DA, Schwieters CD, Nesbitt AE, Nieuwkoop AJ, Gennis RB, Rienstra CM (2011) High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J Biomol NMR 51:227–233

    Article  Google Scholar 

  • Traaseth NJ, Verardi R, Torgersen KD, Karim CB, Thomas DD, Veglia G (2007) Spectroscopic validation of the pentameric structure of phospholamban. Proc Natl Acad Sci USA 104:14676–14681

    Article  ADS  Google Scholar 

  • Traaseth NJ, Ha KN, Verardi R, Shi L, Buffy JJ, Masterson LR, Veglia G (2008) Structural and dynamic basis of phospholamban and sarcolipin inhibition of Ca2+-ATPase. Biochemistry 47:3–13

    Article  Google Scholar 

  • Traaseth NJ, Shi L, Verardi R, Mullen DG, Barany G, Veglia G (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci USA 106:10165–10170

    Article  ADS  Google Scholar 

  • Veglia G, Ha KN, Shi L, Verardi R, Traaseth NJ (2010) What can we learn from a small regulatory membrane protein? Methods Mol Biol 654:303–319

    Article  Google Scholar 

  • Veglia G, Traaseth NJ, Shi L, Verardi R, Gopinath T, Gustavsson M (2012) The hybrid solution/solid-state NMR method for membrane protein structure determination. In: Egelman EH (ed) Comprehensive biophysics. Elsevier, Amsterdam, pp 182–198

    Chapter  Google Scholar 

  • Verardi R, Shi L, Traaseth NJ, Walsh N, Veglia G (2011) Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci USA 108:9101–9106

    Article  ADS  Google Scholar 

  • White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344–346

    Article  ADS  Google Scholar 

  • Wu CH, Ramamoorthy A, Opella SJ (1994) High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J Magn Reson A 109:270–272

    Article  ADS  Google Scholar 

  • Wylie BJ, Sperling LJ, Nieuwkoop AJ, Franks WT, Oldfield E, Rienstra CM (2011) Ultrahigh resolution protein structures using NMR chemical shift tensors. Proc Natl Acad Sci USA 108:16974–16979

    Article  ADS  Google Scholar 

  • Yao L, Grishaev A, Cornilescu G, Bax A (2010) The impact of hydrogen bonding on amide 1H chemical shift anisotropy studied by cross-correlated relaxation and liquid crystal NMR spectroscopy. J Am Chem Soc 132:10866–10875

    Article  Google Scholar 

  • Zhou DH, Nieuwkoop AJ, Berthold DA, Comellas G, Sperling LJ, Tang M, Shah GJ, Brea EJ, Lemkau LR, Rienstra CM (2012) Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy. J Biomol NMR 54:291–305

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Martin Gustavsson and Dr. Vitaly Vostrikov for helpful discussions. This work is supported by the National Institute of Health (GM64742 to G.V.). The experiments were carried out at the University Of Minnesota NMR Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Veglia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 882 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mote, K.R., Gopinath, T. & Veglia, G. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy. J Biomol NMR 57, 91–102 (2013). https://doi.org/10.1007/s10858-013-9766-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9766-2

Keywords

Navigation