Skip to main content

Cryogenic solid state NMR studies of fibrils of the Alzheimer’s disease amyloid-β peptide: perspectives for DNP

Abstract

Dynamic Nuclear Polarization solid-state NMR holds the potential to enable a dramatic increase in sensitivity by exploiting the large magnetic moment of the electron. However, applications to biological solids are hampered in uniformly isotopically enriched biomacromolecules due to line broadening which yields a limited spectral resolution at cryogenic temperatures. We show here that high magnetic fields allow to overcome the broadening of resonance lines often experienced at liquid nitrogen temperatures. For a fibril sample of the Alzheimer’s disease β-amyloid peptide, we find similar line widths at low temperature and at room temperature. The presented results open new perspectives for structural investigations in the solid-state.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Akbey Ü, Franks WT, Linden A, Lange S, Griffin RG, van Rossum B-J, Oschkinat H (2010) Dynamic nuclear polarization of deuterated proteins. Angew Chem Int Ed 49:7803–7806

    Article  Google Scholar 

  2. Bajaj VS, Mak-Jurkauskas ML, Belenky M, Herzfeld J, Griffin RG (2009a) Functional and shunt states of bacteriorhodopsin resolved by 250 GHz dynamic nuclear polarization–enhanced solid-state NMR. Proc Natl Acad Sci USA 106:9244–9249

    ADS  Article  Google Scholar 

  3. Bajaj VS, van der Wel PCA, Griffin RG (2009b) Observation of a low-temperature, dynamically driven structural transition in a polypeptide by solid-state NMR spectroscopy. J Am Chem Soc 131:118–128

    Article  Google Scholar 

  4. Barnes AB, Mak-Jurkauskas ML, Matsuki Y, Bajaj VS, van der Wel PCA, DeRocher R, Bryant J, Sirigiri JR, Temkin RJ, Lugtenburg J, Herzfeld J, Griffin RG (2009) Cryogenic sample exchange NMR probe for magic angle spinning dynamic nuclear polarization. J Magn Reson 198:261–270

    ADS  Article  Google Scholar 

  5. Bayro MJ, Debelouchina GT, Eddy MT, Birkett NR, MacPhee CE, Rosay M, Maas WE, Dobson CM, Griffin RG (2011) Intermolecular structure determination of amyloid fibrils with magic-angle spinning and dynamic nuclear polarization NMR. J Am Chem Soc 133:13967–13974

    Article  Google Scholar 

  6. Castellani F, van Rossum B-J, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle spinning NMR. Nature 420:98–102

    ADS  Article  Google Scholar 

  7. Cummings BJ, Cotman CW (1995) Image-analysis of beta-amyloid load in Alzheimers-disease and relation to dementia severity. Lancet 346:1524–1528

    Article  Google Scholar 

  8. Dasari M, Espargaro A, Sabate R, Lopez del Amo JM, Fink U, Grelle G, Bieschke J, Ventura S, Reif B (2011) Bacterial inclusion bodies of the Alzheimer disease beta-amyloid peptides can be employed to study native like aggregation intermediate states. ChemBioChem 12:407–423

    Article  Google Scholar 

  9. Debelouchina GT, Bayro MJ, van der Wel PCA, Caporini MA, Barnes AB, Rosay M, Maas WE, Griffin RG (2010) Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils. Phys Chem Chem Phys 12:5911–5919

    Article  Google Scholar 

  10. Doster W (2010) The protein-solvent glass transition. Bio Chem Biophys Acta 1804:3–14

    Article  Google Scholar 

  11. Fandrich M, Meinhardt J, Grigorieff N (2009) Structural polymorphism of Alzheimer A-beta and other amyloid fibrils. Prion 3:89–93

    Article  Google Scholar 

  12. Fung BM, Khitrin AK, Ermolaev K (2000) An improved broadband decoupling sequence for liquid crystals and solids. J Magn Reson 142:97–101

    ADS  Article  Google Scholar 

  13. Griffin RG, Prisner TF (2010) High field dynamic nuclear polarization-the renaissance. Phys Chem Chem Phys 12:5737–5740

    Article  Google Scholar 

  14. Hardy JA, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 298:962–964

    Article  Google Scholar 

  15. Hovav Y, Feintuch A, Vega S (2010) Theoretical aspects of dynamic nuclear polarization in the solid state—the solid effect. J Magn Reson 207:176–189

    ADS  Article  Google Scholar 

  16. Hovav Y, Feintuch A, Vega S (2011) Dynamic nuclear polarization assisted spin diffusion for the solid effect case. J Chem Phys 134:074509

    ADS  Article  Google Scholar 

  17. Hu KN, Yu HH, Swager TM, Griffin RG (2004) Dynamic nuclear polarization with biradicals. J Am Chem Soc 126:10844–10845

    Article  Google Scholar 

  18. Hu K-N, Debelouchina GT, Smith AA, Griffin RG (2011) Quantum mechanical theory of dynamic nuclear polarization in solid dielectrics. J. Chem. Phys. 134:125105

    ADS  Article  Google Scholar 

  19. Jacso T, Franks WT, Rose H, Fink U, Broecker J, Keller S, Oschkinat H, Reif B (2012) Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew Chem Int Ed 51:432–435

    Article  Google Scholar 

  20. Lopez del Amo JM, Schmidt M, Fink U, Dasari M, Fändrich M, Reif B (2012) The basic subunit in Alzheimer’s disease beta-amyloid fibrils can be an asymmetric dimer. Angew Chem Int Ed 51:6136–6139

    Article  Google Scholar 

  21. Mak-Jurkauskas ML, Bajaj VS, Hornstein MK, Belenky M, Griffin RG, Herzfeld J (2008) Energy transformations early in the bacteriorhodopsin photocycle revealed by DNP-enhanced solid-state NMR. Proc Natl Acad Sci USA 105:883–888

    ADS  Article  Google Scholar 

  22. Maly T, Debelouchina GT, Bajaj VS, Hu K-N, Joo C-G, Mak-Jurkauskas ML, Sirigiri JR, van der Wel PCA, Herzfeld J, Temkin RJ, Griffin RG (2008) Dynamic nuclear polarization at high magnetic fields. J Chem Phys 128:052211

    ADS  Article  Google Scholar 

  23. Ngai KL, Capaccioli S, Shinyashiki N (2008) The protein “glass” transition and the role of the solvent. J Phys Chem B 112:3826–3832

    Article  Google Scholar 

  24. Reggie L, Lopez JJ, Collinson I, Glaubitz C, Lorch M (2011) Dynamic nuclear polarization-enhanced solid-state NMR of a C-13-labeled signal peptide bound to lipid-reconstituted Sec Translocon. J Am Chem Soc 133:19084–19086

    Article  Google Scholar 

  25. Renault M, Pawsey S, Bos MP, Koers EJ, Nand D, Tommassen-van Boxtel R, Rosay M, Tommassen J, Maas WE, Baldus M (2011) Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew Chem Int Ed Engl 51:2998–3001

    Article  Google Scholar 

  26. Rosay M, Tometich L, Pawsey S, Bader R, Schauwecker R, Blank M, Borchard PM, Cauffman SR, Felch KL, Weber RT, Temkin RJ, Griffin RG, Maas WE (2010) Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results. Phys Chem Chem Phys 12:5850–5860

    Article  Google Scholar 

  27. Sergeyev IV, Day LA, Goldbourt A, McDermott AE (2011) Abstract: chemical Shifts for the Unusual DNA Structure in Pf1 bacteriophage from dynamic-nuclear-polarization-enhanced solid-state NMR spectroscopy. J Am Chem Soc 133:20208–20217

    Article  Google Scholar 

  28. Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    ADS  Article  Google Scholar 

  29. Wasmer C, Lange A, Van Melckebeke H, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    ADS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Helmholtz-Gemeinschaft, the Leibniz-Gemeinschaft and the DFG (Re1435, SFB449, SFB740). We are grateful to the Center for Integrated Protein Science Munich (CIPS-M) for financial support. J.M.L.d.A. acknowledges a postdoctoral stipend of the DFG (Lo1546). We thank Arne Linden for assistance in performing the DNP experiments at the Leibniz-Institut für Molekulare Pharmakologie (FMP), and Antoine Loquet, Max-Planck-Institut für Biophysikalische Chemie in Göttingen, for assitance in the low temperature measurements at 850 MHz.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bernd Reif.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 785 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lopez del Amo, JM., Schneider, D., Loquet, A. et al. Cryogenic solid state NMR studies of fibrils of the Alzheimer’s disease amyloid-β peptide: perspectives for DNP. J Biomol NMR 56, 359–363 (2013). https://doi.org/10.1007/s10858-013-9755-5

Download citation

Keywords

  • Dynamic nuclear polarization (DNP)
  • Magic angle spinning (MAS)
  • Solid-state
  • NMR high magnetic fields
  • Alzheimer’s β-amyloid fibrils