Journal of Biomolecular NMR

, Volume 56, Issue 2, pp 65–75 | Cite as

Fragment-based drug discovery using NMR spectroscopy

  • Mary J. Harner
  • Andreas O. Frank
  • Stephen W. FesikEmail author


Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool for fragment-based drug discovery over the last two decades. While NMR has been traditionally used to elucidate the three-dimensional structures and dynamics of biomacromolecules and their interactions, it can also be a very valuable tool for the reliable identification of small molecules that bind to proteins and for hit-to-lead optimization. Here, we describe the use of NMR spectroscopy as a method for fragment-based drug discovery and how to most effectively utilize this approach for discovering novel therapeutics based on our experience.


NMR spectroscopy Fragment-based drug discovery Fragment-based screening Hit identification Fragment libraries 



This research was supported in part by grants from the National Institutes of Health (NIH Director’s Pioneer Award 5DP1OD006933/8DP1CA174419 to S.W.F. and ARRA stimulus grant 5RC2CA148375 to L.J. Marnett). M.J.H. was supported by a postdoctoral fellowship from the Damon Runyon Cancer Research Foundation, and A.O.F. was supported by a postdoctoral fellowship from the German Academic Exchange Service (DAAD).


  1. Baell JB (2010) Observations on screening-based research and some concerning trends in the literature. Future Med Chem 2:1529–1546CrossRefGoogle Scholar
  2. Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53:2719–2740CrossRefGoogle Scholar
  3. Becattini B, Pellecchia M (2006) SAR by ILOEs: an NMR-based approach to reverse chemical genetics. Chemistry 12:2658–2662CrossRefGoogle Scholar
  4. Becattini B, Culmsee C, Leone M, Zhai D, Zhang X, Crowell KJ, Rega MF, Landshamer S, Reed JC, Plesnila N et al (2006) Structure-activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid. Proc Natl Acad Sci USA 103:12602–12606ADSCrossRefGoogle Scholar
  5. Bohm HJ, Florh A, Stahl M (2004) Scaffold hopping. Drug Discov Today 1:217–224Google Scholar
  6. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G et al (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599ADSCrossRefGoogle Scholar
  7. Borsi V, Calderone V, Fragai M, Luchinat C, Sarti N (2010) Entropic contribution to the linking coefficient in fragment based drug design: a case study. J Med Chem 53:4285–4289CrossRefGoogle Scholar
  8. Bottcher J, Jestel A, Kiefersauer R, Krapp S, Nagel S, Steinbacher S, Steuber H (2011) Key factors for successful generation of protein-fragment structures requirement on protein, crystals, and technology. Meth Enzymol 493:61–89CrossRefGoogle Scholar
  9. Campos-Olivas R (2011) NMR screening and hit validation in fragment based drug discovery. Curr Top Med Chem 11:43–67CrossRefGoogle Scholar
  10. Carr RA, Congreve M, Murray CW, Rees DC (2005) Fragment-based lead discovery: leads by design. Drug Discov Today 10:987–992CrossRefGoogle Scholar
  11. Chessari G, Woodhead AJ (2009) From fragment to clinical candidate–a historical perspective. Drug Discov Today 14:668–675CrossRefGoogle Scholar
  12. Chung S, Parker JB, Bianchet M, Amzel LM, Stivers JT (2009) Impact of linker strain and flexibility in the design of a fragment-based inhibitor. Nat Chem Biol 5:407–413CrossRefGoogle Scholar
  13. Cioffi M, Hunter CA, Packer MJ, Spitaleri A (2008) Determination of protein-ligand binding modes using complexation-induced changes in (1)h NMR chemical shift. J Med Chem 51:2512–2517CrossRefGoogle Scholar
  14. Congreve M, Carr R, Murray C, Jhoti H (2003) A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today 8:876–877CrossRefGoogle Scholar
  15. Constantine KL, Davis ME, Metzler WJ, Mueller L, Claus BL (2006) Protein-ligand NOE matching: a high-throughput method for binding pose evaluation that does not require protein NMR resonance assignments. J Am Chem Soc 128:7252–7263CrossRefGoogle Scholar
  16. Dalvit C (2009) NMR methods in fragment screening: theory and a comparison with other biophysical techniques. Drug Discov Today 14:1051–1057CrossRefGoogle Scholar
  17. Dalvit C, Pevarello P, Tato M, Veronesi M, Vulpetti A, Sundstrom M (2000) Identification of compounds with binding affinity to proteins via magnetization transfer from bulk water. J Biomol NMR 18:65–68CrossRefGoogle Scholar
  18. Dalvit C, Flocco M, Veronesi M, Stockman BJ (2002) Fluorine-NMR competition binding experiments for high-throughput screening of large compound mixtures. Comb Chem High Throughput Screen 5:605–611CrossRefGoogle Scholar
  19. Erlanson DA (2006) Fragment-based lead discovery: a chemical update. Curr Opin Biotechnol 17:643–652CrossRefGoogle Scholar
  20. Erlanson DA, Wells JA, Braisted AC (2004) Tethering: fragment-based drug discovery. Annu Rev Biophys Biomol Struct 33:199–223CrossRefGoogle Scholar
  21. Felli IC, Brutscher B (2009) Recent advances in solution NMR: fast methods and heteronuclear direct detection. Chem Phys Chem 10:1356–1368CrossRefGoogle Scholar
  22. Feng BY, Shelat A, Doman TN, Guy RK, Shoichet BK (2005) High-throughput assays for promiscuous inhibitors. Nat Chem Biol 1:146–148CrossRefGoogle Scholar
  23. Fernandez C, Jahnke W (2004) New approaches for NMR screening in drug discovery. Drg Discov Today 1:277–283CrossRefGoogle Scholar
  24. Fielding L (2007) NMR methods for the determination of protein-ligand dissociation constants. Prog NMR Spec 51:219–242CrossRefGoogle Scholar
  25. Friberg A, Vigil D, Zhao B, Daniels RN, Burke JP, Garcia-Barrantes PM, Camper D, Chauder BA, Lee T, Olejniczak ET et al (2013) Discovery of potent myeloid cell leukemia 1 (mcl-1) inhibitors using fragment-based methods and structure-based design. J Med Chem 56:15–30CrossRefGoogle Scholar
  26. Guntert P (2009) Automated structure determination from NMR spectra. Eur Biophys J 38:129–143ADSCrossRefGoogle Scholar
  27. Hajduk PJ, Greer J (2007) A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 6:211–219CrossRefGoogle Scholar
  28. Hajduk PJ, Meadows RP, Fesik SW (1997) Discovering high-affinity ligands for proteins. Science 278(497):499Google Scholar
  29. Hajduk PJ, Augeri DJ, Mack J, Mendoza R, Yang J, Betz SF, Fesik SW (2000a) NMR-based screening of proteins containing 13C-labeled methyl groups. J Am Chem Soc 122:7898–7904CrossRefGoogle Scholar
  30. Hajduk PJ, Bures M, Praestgaard J, Fesik SW (2000b) Privileged molecules for protein binding identified from NMR-based screening. J Med Chem 43:3443–3447CrossRefGoogle Scholar
  31. Hajduk PJ, Mack JC, Olejniczak ET, Park C, Dandliker PJ, Beutel BA (2004) SOS-NMR: a saturation transfer NMR-based method for determining the structures of protein-ligand complexes. J Am Chem Soc 126:2390–2398CrossRefGoogle Scholar
  32. Hoffer L, Renaud JP, Horvath D (2011) Fragment-based drug design: computational & experimental state of the art. Comb Chem High Throughput Screen 14:500–520CrossRefGoogle Scholar
  33. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730CrossRefGoogle Scholar
  34. Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9:430–431CrossRefGoogle Scholar
  35. Hung AW, Silvestre HL, Wen S, Ciulli A, Blundell TL, Abell C (2009) Application of fragment growing and fragment linking to the discovery of inhibitors of Mycobacterium tuberculosis pantothenate synthetase. Angew Chem Int Ed Engl 48:8452–8456CrossRefGoogle Scholar
  36. Huth JR, Mendoza R, Olejniczak ET, Johnson RW, Cothron DA, Liu Y, Lerner CG, Chen J, Hajduk PJ (2005) ALARM NMR: a rapid and robust experimental method to detect reactive false positives in biochemical screens. J Am Chem Soc 127:217–224CrossRefGoogle Scholar
  37. Ichihara O, Barker J, Law RJ, Whittaker M (2011) Compound design by fragment-linking. Mol Inf 30:298–306CrossRefGoogle Scholar
  38. Jahnke W (2002) Spin labels as a tool to identify and characterize protein-ligand interactions by NMR spectroscopy. Chem Bio Chem 3:167–173CrossRefGoogle Scholar
  39. Jahnke W, Florsheimer A, Blommers MJ, Paris CG, Heim J, Nalin CM, Perez LB (2003) Second-site NMR screening and linker design. Curr Top Med Chem 3:69–80CrossRefGoogle Scholar
  40. Jencks WP (1981) On the attribution and additivity of binding energies. Proc Natl Acad Sci USA 78:4046–4050ADSCrossRefGoogle Scholar
  41. Jhoti H, Cleasby A, Verdonk M, Williams G (2007) Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr Opin Chem Biol 11:485–493CrossRefGoogle Scholar
  42. Klages J, Coles M, Kessler H (2007) NMR-based screening: a powerful tool in fragment-based drug discovery. Analyst 132:693–705ADSCrossRefGoogle Scholar
  43. Kohlmann A, Zech SG, Li F, Zhou T, Squillace RM, Commodore L, Greenfield MT, Lu X, Miller DP, Huang WS et al (2013) Fragment growing and linking lead to novel nanomolar lactate dehydrogenase inhibitors. J Med ChemGoogle Scholar
  44. Krimm I (2012) INPHARMA-based identification of ligand binding site in fragment-based drug design. Med Chem Comm 3:605–610CrossRefGoogle Scholar
  45. Krishnamoorthy J, Yu VC, Mok YK (2010) Auto-FACE: an NMR based binding site mapping program for fast chemical exchange protein-ligand systems. PLoS One 5:e8943ADSCrossRefGoogle Scholar
  46. Kuntz ID, Chen K, Sharp KA, Kollman PA (1999) The maximal affinity of ligands. Proc Natl Acad Sci USA 96:9997–10002ADSCrossRefGoogle Scholar
  47. Leone M, Freeze HH, Chan CS, Pellecchia M (2006) The Nuclear Overhauser Effect in the lead identification process. Curr Drug Discov Technol 3:91–100CrossRefGoogle Scholar
  48. Lepre CA (2011) Practical aspects of NMR-based fragment screening. Meth Enzymol 493:219–239CrossRefGoogle Scholar
  49. Lescop E, Kern T, Brutscher B (2010) Guidelines for the use of band-selective radiofrequency pulses in hetero-nuclear NMR: example of longitudinal-relaxation-enhanced BEST-type 1H–15 N correlation experiments. J Magn Reson 203:190–198ADSCrossRefGoogle Scholar
  50. Li D, DeRose EF, London RE (1999) The inter-ligand Overhauser effect: a powerful new NMR approach for mapping structural relationships of macromolecular ligands. J Biomol NMR 15:71–76zbMATHCrossRefGoogle Scholar
  51. Ludwig C, Guenther UL (2009) Ligand based NMR methods for drug discovery. Front Biosci 14:4565–4574CrossRefGoogle Scholar
  52. Ludwig C, Michiels PJ, Wu X, Kavanagh KL, Pilka E, Jansson A, Oppermann U, Gunther UL (2008) SALMON: solvent accessibility, ligand binding, and mapping of ligand orientation by NMR spectroscopy. J Med Chem 51:1–3CrossRefGoogle Scholar
  53. Manzenrieder F, Frank AO, Kessler H (2008) Phosphorus NMR spectroscopy as a versatile tool for compound library screening. Angew Chem Int Ed Engl 47:2608–2611CrossRefGoogle Scholar
  54. Mayer M, Meyer B (1999) Characterization of ligand binding of saturation transfer difference NMR spectroscopy. Angew Chem Int Ed Engl 38:1784–1788CrossRefGoogle Scholar
  55. Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123:6108–6117CrossRefGoogle Scholar
  56. McCoy MA, Wyss DF (2002) Spatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift perturbations. J Am Chem Soc 124:11758–11763CrossRefGoogle Scholar
  57. Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed Engl 42:864–890CrossRefGoogle Scholar
  58. Murray CW, Blundell TL (2010) Structural biology in fragment-based drug design. Curr Opin Struct Biol 20:497–507CrossRefGoogle Scholar
  59. Pellecchia M, Bertini I, Cowburn D, Dalvit C, Giralt E, Jahnke W, James TL, Homans SW, Kessler H, Luchinat C et al (2008) Perspectives on NMR in drug discovery: a technique comes of age. Nat Rev Drug Discov 7:738–745CrossRefGoogle Scholar
  60. Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371ADSCrossRefGoogle Scholar
  61. Rega MF, Wu B, Wei J, Zhang Z, Cellitti JF, Pellecchia M (2011) SAR by interligand nuclear overhauser effects (ILOEs) based discovery of acylsulfonamide compounds active against Bcl-x(L) and Mcl-1. J Med Chem 54:6000–6013CrossRefGoogle Scholar
  62. Reibarkh M, Malia TJ, Wagner G (2006) NMR distinction of single- and multiple-mode binding of small-molecule protein ligands. J Am Chem Soc 128:2160–2161CrossRefGoogle Scholar
  63. Sanchez-Pedregal VM, Reese M, Meiler J, Blommers MJ, Griesinger C, Carlomagno T (2005) The INPHARMA method: protein-mediated interligand NOEs for pharmacophore mapping. Angew Chem Int Ed Engl 44:4172–4175CrossRefGoogle Scholar
  64. Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211CrossRefGoogle Scholar
  65. Seidler J, McGovern SL, Doman TN, Shoichet BK (2003) Identification and prediction of promiscuous aggregating inhibitors among known drugs. J Med Chem 46:4477–4486CrossRefGoogle Scholar
  66. Shortridge MD, Powers R (2011) NMR Screening Methods for Drug Discovery. In: Biomolecular NMR Spectroscopy. IOS Press BV, Netherlands, p 381Google Scholar
  67. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274:1531–1534ADSCrossRefGoogle Scholar
  68. Sledz P, Silvestre HL, Hung AW, Ciulli A, Blundell TL, Abell C (2010) Optimization of the interligand Overhauser effect for fragment linking: application to inhibitor discovery against Mycobacterium tuberculosis pantothenate synthetase. J Am Chem Soc 132:4544–4545CrossRefGoogle Scholar
  69. Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed Engl 51:6140–6143CrossRefGoogle Scholar
  70. Tengel T, Fex T, Emtenas H, Almqvist F, Sethson I, Kihlberg J (2004) Use of 19F NMR spectroscopy to screen chemical libraries for ligands that bind to proteins. Org Biomol Chem 2:725–731CrossRefGoogle Scholar
  71. Vanwetswinkel S, Heetebrij RJ, van Duynhoven J, Hollander JG, Filippov DV, Hajduk PJ, Siegal G (2005) TINS, target immobilized NMR screening: an efficient and sensitive method for ligand discovery. Chem Biol 12:207–216CrossRefGoogle Scholar
  72. Vazquez J, Tautz L, Ryan JJ, Vuori K, Mustelin T, Pellecchia M (2007) Development of molecular probes for second-site screening and design of protein tyrosine phosphatase inhibitors. J Med Chem 50:2137–2143CrossRefGoogle Scholar
  73. Vazquez J, De SK, Chen LH, Riel-Mehan M, Emdadi A, Cellitti J, Stebbins JL, Rega MF, Pellecchia M (2008) Development of paramagnetic probes for molecular recognition studies in protein kinases. J Med Chem 51:3460–3465CrossRefGoogle Scholar
  74. Warr WA (2011) Some trends in chem(o)informatics. Meth Mol Biol 672:1–37CrossRefGoogle Scholar
  75. Wu B, Zhang Z, Noberini R, Barile E, Giulianotti M, Pinilla C, Houghten RA, Pasquale EB, Pellecchia M (2013) HTS by NMR of combinatorial libraries: a fragment-based approach to ligand discovery. Chem Biol 20:19–33CrossRefGoogle Scholar
  76. Zhang X, Sanger A, Hemmig R, Jahnke W (2009) Ranking of high-affinity ligands by NMR spectroscopy. Angew Chem Int Ed Engl 48:6691–6694CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mary J. Harner
    • 1
  • Andreas O. Frank
    • 1
    • 2
  • Stephen W. Fesik
    • 1
    Email author
  1. 1.Department of BiochemistryVanderbilt University School of MedicineNashvilleUSA
  2. 2.Novartis Institutes for BioMedical Research (NIBR), Global Discovery ChemistryEmeryvilleUSA

Personalised recommendations