Skip to main content
Log in

4D experiments measured with APSY for automated backbone resonance assignments of large proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Detailed structural and functional characterization of proteins by solution NMR requires sequence-specific resonance assignment. We present a set of transverse relaxation optimization (TROSY) based four-dimensional automated projection spectroscopy (APSY) experiments which are designed for resonance assignments of proteins with a size up to 40 kDa, namely HNCACO, HNCOCA, HNCACB and HN(CO)CACB. These higher-dimensional experiments include several sensitivity-optimizing features such as multiple quantum parallel evolution in a ‘just-in-time’ manner, aliased off-resonance evolution, evolution-time optimized APSY acquisition, selective water-handling and TROSY. The experiments were acquired within the concept of APSY, but they can also be used within the framework of sparsely sampled experiments. The multidimensional peak lists derived with APSY provided chemical shifts with an approximately 20 times higher precision than conventional methods usually do, and allowed the assignment of 90 % of the backbone resonances of the perdeuterated primase-polymerase ORF904, which contains 331 amino acid residues and has a molecular weight of 38.4 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beck K, Vannini A, Cramer P, Lipps G (2010) The archeo-eukaryotic primase of plasmid pRN1 requires a helix bundle domain for faithful primer synthesis. Nucleic Acids Res 38(19):6707–6718. doi:10.1093/nar/gkq447

    Article  Google Scholar 

  • Brutscher B, Morelle N, Cordier F, Marion D (1995) Determination of an initial set of NOE-derived distance constraints for the structure determination of 15N/13C-labeled proteins. J Magn Reson B 109(2):238–242

    Google Scholar 

  • Coggins BE, Zhou P (2006) Polar Fourier transforms of radially sampled NMR data. J Magn Reson 182(1):84–95. doi:10.1016/j.jmr.2006.06.016

    Article  ADS  Google Scholar 

  • Emsley L, Bodenhausen G (1990) Gaussian pulse cascades—new analytical functions for rectangular selective inversion and in-phase excitation in NMR. Chem Phys Lett 165(6):469–476

    Article  ADS  Google Scholar 

  • Fiorito F, Hiller S, Wider G, Wüthrich K (2006) Automated resonance assignment of proteins: 6D APSY-NMR. J Biomol NMR 35(1):27–37. doi:10.1007/s10858-006-0030-x

    Article  Google Scholar 

  • Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93(1):93–141

    Google Scholar 

  • Gossert AD, Hiller S, Fernandez C (2011) Automated NMR resonance assignment of large proteins for protein-ligand interaction studies. J Am Chem Soc 133(2):210–213. doi:10.1021/ja108383x

    Article  Google Scholar 

  • Grzesiek S, Bax A (1993) The importance of not saturating H2O in protein NMR—application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115(26):12593–12594

    Article  Google Scholar 

  • Güntert P, Dötsch V, Wider G, Wüthrich K (1992) Processing of multidimensional NMR data with the new software PROSA. J Biomol NMR 2(6):619–629

    Article  Google Scholar 

  • Hiller S, Wider G (eds) (2011) Automated projection spectroscopy and its applications, vol 316 Topics in Current Chemistry. Berlin Heidelberg, Springer

    Google Scholar 

  • Hiller S, Fiorito F, Wüthrich K, Wider G (2005a) Automated projection spectroscopy (APSY). Proc Natl Acad Sci USA 102(31):10876–10881. doi:10.1073/pnas.0504818102

    Article  ADS  Google Scholar 

  • Hiller S, Wider G, Etezady-Esfarjani T, Horst R, Wüthrich K (2005b) Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures. J Biomol NMR 32(1):61–70. doi:10.1007/s10858-005-3070-8

    Article  Google Scholar 

  • Hiller S, Wasmer C, Wider G, Wüthrich K (2007) Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR Spectroscopy. J Am Chem Soc 129(35):10823–10828. doi:10.1021/ja072564+

    Article  Google Scholar 

  • Hiller S, Joss R, Wider G (2008a) Automated NMR assignment of protein side chain resonances using automated projection spectroscopy (APSY). J Am Chem Soc 130(36):12073–12079. doi:10.1021/ja803161d

    Article  Google Scholar 

  • Hiller S, Wider G, Wüthrich K (2008b) APSY-NMR with proteins: practical aspects and backbone assignment. J Biomol NMR 42(3):179–195. doi:10.1007/s10858-008-9266-y

    Article  Google Scholar 

  • Jaravine VA, Zhuravleva AV, Permi P, Ibraghimov I, Orekhov VY (2008) Hyperdimensional NMR spectroscopy with nonlinear sampling. J Am Chem Soc 130(12):3927–3936. doi:10.1021/jao077282o

    Article  Google Scholar 

  • Jung YS, Zweckstetter M (2004) MARS—robust automatic backbone assignment of proteins. J Biomol NMR 30(1):11–23

    Article  Google Scholar 

  • Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114(26):10663–10665

    Article  Google Scholar 

  • Kazimierczuk K, Zawadzka A, Kozminski W, Zhukov I (2006) Random sampling of evolution time space and Fourier transform processing. J Biomol NMR 36(3):157–168. doi:10.1007/s10858-006-9077-y

    Article  Google Scholar 

  • Kim S, Szyperski T (2003) GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 125(5):1385–1393. doi:10.1021/ja028197d

    Article  Google Scholar 

  • Konrat R, Yang DW, Kay LE (1999) A 4D TROSY-based pulse scheme for correlating (HNi)-1H,15Ni,13C αi ,13Ci-1′ chemical shifts in high molecular weight [15N,13C,2H]-labeled proteins. J Biomol NMR 15(4):309–313

    Article  Google Scholar 

  • Krähenbühl B, Wider G (2012) Automated projection spectroscopy (APSY) for the assignment of NMR resonances in biological macromolecules. Chimia 66(10):767–771

    Article  Google Scholar 

  • Krähenbühl B, Hiller S, Wider G (2011) 4D APSY-HBCB(CG)CDHD experiment for automated assignment of aromatic amino acid side chains in proteins. J Biomol NMR 51(3):313–318. doi:10.1007/s10858-011-9572-7

    Article  Google Scholar 

  • Kupce E, Freeman R (2003) Projection-reconstruction of three-dimensional NMR spectra. J Am Chem Soc 125(46):13958–13959. doi:10.1021/ja038297z

    Article  Google Scholar 

  • Marion D, Ikura M, Tschudin R, Bax A (1989) Rapid recording of 2D NMR spectra withoug phase cycling—application to the study of hydrogen-exchange in proteins. J Magn Reson 85(2):393–399

    Google Scholar 

  • Narayanan RL, Dürr UHN, Bibow S, Biernat J, Mandelkow E, Zweckstetter M (2010) Automatic assignment of the intrinsically disordered protein Tau with 441 residues. J Am Chem Soc 132(34):11906–11907. doi:10.1021/ja105657f

    Article  Google Scholar 

  • Orekhov VY, Ibraghimov I, Billeter M (2003) Optimizing resolution in multidimensional NMR by three-way decomposition. J Biomol NMR 27(2):165–173. doi:10.1023/A:1024944720653

    Article  Google Scholar 

  • Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole–dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94(23):12366–12371

    Article  ADS  Google Scholar 

  • Pervushin KV, Wider G, Wüthrich K (1998) Single transition-to-single transition polarization transfer (ST2-PT) in 15N,1H-TROSY. J Biomol NMR 12(2):345–348

    Article  Google Scholar 

  • Salzmann M, Wider G, Pervushin K, Wuthrich K (1999) Improved sensitivity and coherence selection for 15N,1H -TROSY elements in triple resonance experiments. J Biomol NMR 15(2):181–184

    Article  Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broad-band decoupling—WALTZ-16. J Magn Reson 52(2):335–338

    Google Scholar 

  • Szyperski T, Wider G, Bushweller JH, Wüthrich K (1993) Reduced dimensionality in triple-resonance NMR experiments. J Am Chem Soc 115(20):9307–9308

    Article  Google Scholar 

  • Volk J, Herrmann T, Wüthrich K (2008) Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH. J Biomol NMR 41(3):127–138. doi:10.1007/s10858-008-9243-5

    Article  Google Scholar 

  • Werner-Allen JW, Jiang L, Zhou P (2006) A ‘just-in-time’ HN(CA)CO experiment for the backbone assignment of large proteins with high sensitivity. J Magn Reson 181(1):177–180. doi:10.1016/j.jmr.2006.04.001

    Article  ADS  Google Scholar 

  • Wider G, Dreier L (2006) Measuring protein concentrations by NMR spectroscopy. J Am Chem Soc 128(8):2571–2576. doi:10.1021/ja055336t

    Article  Google Scholar 

  • Yang DW, Kay LE (1999) TROSY triple-resonance four-dimensional NMR spectroscopy of a 46 ns tumbling protein. J Am Chem Soc 121(11):2571–2575

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Sebastian Hiller (Basel) for technical discussions. The Swiss National Science Foundation (SNSF) is gratefully acknowledged for financial support (projects 120048 and 140559).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Wider.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 756 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krähenbühl, B., Boudet, J. & Wider, G. 4D experiments measured with APSY for automated backbone resonance assignments of large proteins. J Biomol NMR 56, 149–154 (2013). https://doi.org/10.1007/s10858-013-9731-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9731-0

Keywords

Navigation