Skip to main content
Log in

A NMR guided approach for CsrA–RNA crystallization

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Structure determination of protein–nucleic acid complexes remains a challenging task. Here we present a simple method for generating crystals of a CsrA–nucleic acid complex, guided entirely by results from nuclear magnetic resonances spectroscopy (NMR) spectroscopy. Using a construct that lacks thirteen non-essential C-terminal residues, efficient binding to DNA could be demonstrated. One CsrA dimer interacts with two DNA oligonucleotides, similar to previous findings with RNA. Furthermore, the NMR study of the CsrA–DNA complex was the basis for successfully homing in on conditions that were suitable for obtaining crystals of the CsrA–DNA complex. Our results may be useful for those cases where RNA in protein–nucleic acid complexes may be replaced by DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baker CS, Morozov I, Suzuki K, Romeo T, Babitzke P (2002) CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli. Mol Microbiol 44(6):1599–1610

    Article  Google Scholar 

  • Bax A, Grzesiek S (1993) Methodological advances in protein NMR. Acc Chem Res 26(4):131–138

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe—a multidimensional spectral processing system based on unix pipes. J Biomol NMR 6(3):277–293

    Article  Google Scholar 

  • Dubey AK, Baker CS, Suzuki K, Jones AD, Pandit P, Romeo T, Babitzke P (2003) CsrA regulates translation of the Escherichia coli carbon starvation gene, cstA, by blocking ribosome access to the cstA transcript. J Bacteriol 185(15):4450–4460

    Article  Google Scholar 

  • Dubey AK, Baker CS, Romeo T, Babitzke P (2005) RNA sequence and secondary structure participate in high-affinity CsrA–RNA interaction. RNA 11(10):1579–1587. doi:10.1261/rna.2990205

    Article  Google Scholar 

  • Gudapaty S, Suzuki K, Wang X, Babitzke P, Romeo T (2001) Regulatory interactions of Csr components: the RNA binding protein CsrA activates csrB transcription in Escherichia coli. J Bacteriol 183(20):6017–6027

    Article  Google Scholar 

  • Gutierrez P, Li Y, Osborne MJ, Pomerantseva E, Liu Q, Gehring K (2005) Solution structure of the carbon storage regulator protein CsrA from Escherichia coli. J Bacteriol 187(10):3496–3501. doi:10.1128/JB.187.10.3496-3501.2005

    Article  Google Scholar 

  • Heeb S, Kuehne SA, Bycroft M, Crivii S, Allen MD, Haas D, Camara M, Williams P (2006) Functional analysis of the post-transcriptional regulator RsmA reveals a novel RNA-binding site. J Mol Biol 355(5):1026–1036. doi:10.1016/j.jmb.2005.11.045

    Article  Google Scholar 

  • Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184(1):290–301

    Article  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMRView—a computer-program for the visualization and analysis of nmr data. J Biomol NMR 4(5):603–614

    Article  Google Scholar 

  • Leulliot N, Varani G (2001) Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40(27):7947–7956

    Article  Google Scholar 

  • Liu MY, Gui G, Wei B, Preston JF 3rd, Oakford L, Yuksel U, Giedroc DP, Romeo T (1997) The RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in Escherichia coli. J Biol Chem 272(28):17502–17510

    Article  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. J Biomol NMR 2(6):661–665

    Article  Google Scholar 

  • Rife C, Schwarzenbacher R, McMullan D, Abdubek P, Ambing E, Axelrod H, Biorac T, Canaves JM, Chiu HJ, Deacon AM, DiDonato M, Elsliger MA, Godzik A, Grittini C, Grzechnik SK, Hale J, Hampton E, Han GW, Haugen J, Hornsby M, Jaroszewski L, Klock HE, Koesema E, Kreusch A, Kuhn P, Lesley SA, Miller MD, Moy K, Nigoghossian E, Paulsen J, Quijano K, Reyes R, Sims E, Spraggon G, Stevens RC, van den Bedem H, Velasquez J, Vincent J, White A, Wolf G, Xu Q, Hodgson KO, Wooley J, Wilson IA (2005) Crystal structure of the global regulatory protein CsrA from Pseudomonas putida at 2.05 A resolution reveals a new fold. Proteins 61(2):449–453. doi:10.1002/prot.20502

    Article  Google Scholar 

  • Romeo T (1996) Post-transcriptional regulation of bacterial carbohydrate metabolism: evidence that the gene product CsrA is a global mRNA decay factor. Res Microbiol 147(6–7):505–512

    Article  Google Scholar 

  • Romeo T (1998) Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol Microbiol 29(6):1321–1330

    Article  Google Scholar 

  • Romeo T, Gong M, Liu MY, Brun-Zinkernagel AM (1993) Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175(15):4744–4755

    Google Scholar 

  • Sabnis NA, Yang H, Romeo T (1995) Pleiotropic regulation of central carbohydrate metabolism in Escherichia coli via the gene csrA. J Biol Chem 270(49):29096–29104

    Article  Google Scholar 

  • Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, Allain FH (2007) Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol 14(9):807–813. doi:10.1038/nsmb1285

    Article  Google Scholar 

  • Wei B, Shin S, LaPorte D, Wolfe AJ, Romeo T (2000) Global regulatory mutations in csrA and rpoS cause severe central carbon stress in Escherichia coli in the presence of acetate. J Bacteriol 182(6):1632–1640

    Article  Google Scholar 

  • Wei BL, Brun-Zinkernagel AM, Simecka JW, Pruss BM, Babitzke P, Romeo T (2001) Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol Microbiol 40(1):245–256

    Article  Google Scholar 

  • Weilbacher T, Suzuki K, Dubey AK, Wang X, Gudapaty S, Morozov I, Baker CS, Georgellis D, Babitzke P, Romeo T (2003) A novel sRNA component of the carbon storage regulatory system of Escherichia coli. Mol Microbiol 48(3):657–670

    Article  Google Scholar 

  • White D, Hart ME, Romeo T (1996) Phylogenetic distribution of the global regulatory gene csrA among eubacteria. Gene 182(1–2):221–223

    Article  Google Scholar 

  • Williamson JR (2000) Induced fit in RNA-protein recognition. Nat Struct Biol 7(10):834–837. doi:10.1038/79575

    Article  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31(6):1647–1651

    Article  Google Scholar 

  • Yang H, Liu MY, Romeo T (1996) Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product. J Bacteriol 178(4):1012–1017

    Google Scholar 

Download references

Acknowledgments

The authors thank Mike Delk for NMR technical support.

Conflict of interest

The authors declare that they have no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Gronenborn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koharudin, L.M.I., Boelens, R., Kaptein, R. et al. A NMR guided approach for CsrA–RNA crystallization. J Biomol NMR 56, 31–39 (2013). https://doi.org/10.1007/s10858-013-9712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-013-9712-3

Keywords

Navigation