Journal of Biomolecular NMR

, Volume 54, Issue 4, pp 401–413 | Cite as

Characterization of the ground state dynamics of proteorhodopsin by NMR and optical spectroscopies

  • Jochen Stehle
  • Frank Scholz
  • Frank Löhr
  • Sina Reckel
  • Christian Roos
  • Michaela Blum
  • Markus Braun
  • Clemens Glaubitz
  • Volker Dötsch
  • Josef Wachtveitl
  • Harald Schwalbe
Article

Abstract

We characterized the dynamics of proteorhodopsin (PR), solubilized in diC7PC, a detergent micelle, by liquid-state NMR spectroscopy at T = 323 K. Insights into the dynamics of PR at different time scales could be obtained and dynamic hot spots could be identified at distinct, functionally relevant regions of the protein, including the BC loop, the EF loop, the N-terminal part of helix F and the C-terminal part of helix G. We further characterize the dependence of the photocycle on different detergents (n-Dodecyl β-D-maltoside DDM; 1,2-diheptanoyl-sn-glycero-3-phosphocholine diC7PC) by ultrafast time-resolved UV/VIS spectroscopy. While the photocycle intermediates of PR in diC7PC and DDM exhibit highly similar spectral characteristics, significant changes in the population of these intermediates are observed. In-situ NMR experiments have been applied to characterize structural changes during the photocycle. Light-induced chemical shift changes detected during the photocycle in diC7PC are very small, in line with the changes in the population of intermediates in the photocycle of proteorhodopsin in diC7PC, where the late O-intermediate populated in DDM is missing and the population is shifted towards an equilibrium of intermediates states (M, N, O) without accumulation of a single populated intermediate.

Keywords

Proteorhodopsin Photocycle Membrane protein dynamics NMR spectroscopy 

Abbreviations

PR

Proteorhodopsin

BR

Bacteriorhodopsin

FT

Fourier transform

IR

Infrared

diC7PC

1,2-diheptanoyl-sn-glycero-3-phosphocholine

DDM

n-Dodecyl β-d-maltoside

NMR

Nuclear magnetic resonance

MES

2-(N-morpholino)ethanesulfonic acid

SRII

Sensory rhodopsin II

UV

Ultra violet

Supplementary material

10858_2012_9684_MOESM1_ESM.docx (2.4 mb)
Supplementary material 1 (DOCX 7151 kb)

References

  1. Andersson M, Malmerberg E, Westenhoff S, Katona G, Cammarata M, Wohri AB, Johansson LC, Ewald F, Eklund M, Wulff M, Davidsson J, Neutze R (2009) Structural dynamics of light-driven proton pumps. Structure 17(9):1265–1275. doi:10.1016/j.str.2009.07.007 CrossRefGoogle Scholar
  2. Anukanth A, Khorana HG (1994) Structure and function in rhodopsin. Requirements of a specific structure for the intradiscal domain. J Biol Chem 269(31):19738–19744Google Scholar
  3. Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411(6839):786–789. doi:10.1038/35081051 ADSCrossRefGoogle Scholar
  4. Bogomolni RA, Spudich JL (1982) Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci U S A 79(20):6250–6254ADSCrossRefGoogle Scholar
  5. Cooper A, Dryden DT (1984) Allostery without conformational change. A plausible model. Eur Biophys J 11(2):103–109CrossRefGoogle Scholar
  6. Devos C, Robberecht P, Nokin P, Waelbroeck M, Clinet M, Camus JC, Beaufort P, Schoenfeld P, Christophe J (1985) Uncoupling between beta-adrenoceptors and adenylate-cyclase in dog ischemic myocardium. N-S Arch Pharmacol 331(1):71–75CrossRefGoogle Scholar
  7. Dioumaev AK, Brown LS, Shih J, Spudich EN, Spudich JL, Lanyi JK (2002) Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry 41(17):5348–5358CrossRefGoogle Scholar
  8. Doi T, Molday RS, Khorana HG (1990) Role of the intradiscal domain in rhodopsin assembly and function. Proc Natl Acad Sci USA 87(13):4991–4995ADSCrossRefGoogle Scholar
  9. Freire E (1998) Statistical thermodynamic linkage between conformational and binding equilibria. Adv Protein Chem 51:255–279CrossRefGoogle Scholar
  10. Friedrich T, Geibel S, Kalmbach R, Chizhov I, Ataka K, Heberle J, Engelhard M, Bamberg E (2002) Proteorhodopsin is a light-driven proton pump with variable vectoriality. J Mol Biol 321(5):821–838CrossRefGoogle Scholar
  11. Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17(6):768–774. doi:10.1038/nsmb.1807 CrossRefGoogle Scholar
  12. Hempelmann F, Holper S, Verhoefen MK, Woerner AC, Kohler T, Fiedler SA, Pfleger N, Wachtveitl J, Glaubitz C (2011) His75-Asp97 cluster in green proteorhodopsin. J Am Chem Soc 133(12):4645–4654. doi:10.1021/ja111116a CrossRefGoogle Scholar
  13. Henzler-Wildman KA, Lei M, Thai V, Kerns SJ, Karplus M, Kern D (2007) A hierarchy of timescales in protein dynamics is linked to enzyme catalysis. Nature 450(7171):913–916. doi:10.1038/nature06407 ADSCrossRefGoogle Scholar
  14. Hwang PM, Bishop RE, Kay LE (2004) The integral membrane enzyme PagP alternates between two dynamically distinct states. Proc Natl Acad Sci U S A 101(26):9618–9623. doi:10.1073/pnas.0402324101 ADSCrossRefGoogle Scholar
  15. Klare JP, Bordignon E, Doebber M, Fitter J, Kriegsmann J, Chizhov I, Steinhoff HJ, Engelhard M (2006) Effects of solubilization on the structure and function of the sensory rhodopsin II/transducer complex. J Mol Biol 356(5):1207–1221. doi:10.1016/j.jmb.2005.12.015 CrossRefGoogle Scholar
  16. Koshland DE Jr (1998) Conformational changes: how small is big enough? Nat Med 4(10):1112–1114. doi:10.1038/2605 CrossRefGoogle Scholar
  17. Krebs RA, Alexiev U, Partha R, DeVita AM, Braiman MS (2002) Detection of fast light-activated H+release and M intermediate formation from proteorhodopsin. BMC Physiol 2:5CrossRefGoogle Scholar
  18. Kuhn T, Schwalbe H (2000) Monitoring the kinetics of ion-dependent protein folding by time-resolved NMR spectroscopy at atomic resolution. J Am Chem Soc 122(26):6169–6174. doi:10.1021/Ja994212b CrossRefGoogle Scholar
  19. Lakatos M, Lanyi JK, Szakacs J, Varo G (2003) The photochemical reaction cycle of proteorhodopsin at low pH. Biophys J 84(5):3252–3256. doi:10.1016/S0006-3495(03)70049-6 CrossRefGoogle Scholar
  20. Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688. doi:10.1146/annurev.physiol.66.032102.150049 CrossRefGoogle Scholar
  21. Lanyi JK, Luecke H (2001) Bacteriorhodopsin. Curr Opin Struct Biol 11(4):415–419CrossRefGoogle Scholar
  22. Leff P (1995) The 2-state model of receptor activation. Trends Pharmacol Sci 16(3):89–97CrossRefGoogle Scholar
  23. Lorinczi E, Verhoefen MK, Wachtveitl J, Woerner AC, Glaubitz C, Engelhard M, Bamberg E, Friedrich T (2009) Voltage- and pH-dependent changes in vectoriality of photocurrents mediated by wild-type and mutant proteorhodopsins upon expression in Xenopus oocytes. J Mol Biol 393(2):320–341. doi:10.1016/j.jmb.2009.07.055 CrossRefGoogle Scholar
  24. Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 A resolution. J Mol Biol 291(4):899–911. doi:10.1006/jmbi.1999.3027 CrossRefGoogle Scholar
  25. Luecke H, Schobert B, Stagno J, Imasheva ES, Wang JM, Balashov SP, Lanyi JK (2008) Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore. Proc Natl Acad Sci U S A 105(43):16561–16565. doi:10.1073/pnas.0807162105 ADSCrossRefGoogle Scholar
  26. Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78(1):237–243CrossRefGoogle Scholar
  27. Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta 1565(2):144–167CrossRefGoogle Scholar
  28. Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A 70(10):2853–2857ADSCrossRefGoogle Scholar
  29. Popovych N, Sun S, Ebright RH, Kalodimos CG (2006) Dynamically driven protein allostery. Nat Struct Mol Biol 13(9):831–838. doi:10.1038/nsmb1132 CrossRefGoogle Scholar
  30. Ranaghan MJ, Schwall CT, Alder NN, Birge RR (2011) Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. J Am Chem Soc 133(45):18318–18327. doi:10.1021/ja2070957 CrossRefGoogle Scholar
  31. Reckel S, Gottstein D, Stehle J, Löhr F, Verhoefen MK, Takeda M, Silvers R, Kainosho M, Glaubitz C, Wachtveitl J, Bernhard F, Schwalbe H, Güntert P, Dötsch V (2011) Solution NMR structure of proteorhodopsin. Angew Chem Int Ed Engl 50(50):11942–11946. doi:10.1002/anie.201105648 CrossRefGoogle Scholar
  32. Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127(22):8014–8015. doi:10.1021/Ja051306e CrossRefGoogle Scholar
  33. Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257(17):10306–10313Google Scholar
  34. Shi L, Ahmed MA, Zhang W, Whited G, Brown LS, Ladizhansky V (2009a) Three-dimensional solid-state NMR study of a seven-helical integral membrane proton pump–structural insights. J Mol Biol 386(4):1078–1093CrossRefGoogle Scholar
  35. Shi L, Lake EM, Ahmed MA, Brown LS, Ladizhansky V (2009b) Solid-state NMR study of proteorhodopsin in the lipid environment: secondary structure and dynamics. Biochim Biophys Acta 1788(12):2563–2574. doi:10.1016/j.bbamem.2009.09.011 CrossRefGoogle Scholar
  36. Sudo Y, Spudich JL (2006) Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. Proc Natl Acad Sci U S A 103(44):16129–16134. doi:10.1073/pnas.0607467103 ADSCrossRefGoogle Scholar
  37. Takahashi T, Tomioka H, Kamo N, Kobatake Y (1985) A photosystem other than Ps370 also mediates the negative phototaxis of Halobacterium-Halobium. FEMS Microbiol Lett 28(2):161–164CrossRefGoogle Scholar
  38. Varo G, Brown LS, Lakatos M, Lanyi JK (2003) Characterization of the photochemical reaction cycle of proteorhodopsin. Biophys J 84(2 Pt 1):1202–1207. doi:10.1016/S0006-3495(03)74934-0 CrossRefGoogle Scholar
  39. Verhoefen MK, Schafer G, Shastri S, Weber I, Glaubitz C, Mäntele W, Wachtveitl J (2011) Low temperature FTIR spectroscopy provides new insights in the pH-dependent proton pathway of proteorhodopsin. Biochim Biophys Acta 12:1583–1590. doi:10.1016/j.bbabio.2011.09.001 Google Scholar
  40. Villinger S, Briones R, Giller K, Zachariae U, Lange A, de Groot BL, Griesinger C, Becker S, Zweckstetter M (2010) Functional dynamics in the voltage-dependent anion channel. Proc Natl Acad Sci U S A 107(52):22546–22551. doi:10.1073/pnas.1012310108 ADSCrossRefGoogle Scholar
  41. Wand AJ (2001) Dynamic activation of protein function: a view emerging from NMR spectroscopy. Nat Struct Biol 8(11):926–931. doi:10.1038/nsb1101-926 CrossRefGoogle Scholar
  42. Yamada K, Kawanabe A, Kandori H (2010) Importance of alanine at position 178 in proteorhodopsin for absorption of prevalent ambient light in the marine environment. Biochemistry 49(11):2416–2423. doi:10.1021/bi9020204 CrossRefGoogle Scholar
  43. Yang J, Aslimovska L, Glaubitz C (2011) Molecular dynamics of proteorhodopsin in lipid bilayers by solid-state NMR. J Am Chem Soc 133(13):4874–4881. doi:10.1021/ja109766n CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Jochen Stehle
    • 1
    • 4
  • Frank Scholz
    • 3
  • Frank Löhr
    • 2
    • 4
  • Sina Reckel
    • 2
    • 4
  • Christian Roos
    • 2
    • 4
  • Michaela Blum
    • 2
    • 4
  • Markus Braun
    • 3
  • Clemens Glaubitz
    • 2
    • 4
  • Volker Dötsch
    • 2
    • 4
  • Josef Wachtveitl
    • 3
  • Harald Schwalbe
    • 1
    • 4
  1. 1.Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtFrankfurtGermany
  2. 2.Institute of Biophysical ChemistryGoethe University FrankfurtFrankfurtGermany
  3. 3.Institute of Physical and Theoretical ChemistryGoethe University FrankfurtFrankfurtGermany
  4. 4.Center of Biomolecular Magnetic ResonanceGoethe University FrankfurtFrankfurtGermany

Personalised recommendations