Skip to main content
Log in

An improved algorithm for MFR fragment assembly

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A method for generating protein backbone models from backbone only NMR data is presented, which is based on molecular fragment replacement (MFR). In a first step, the PDB database is mined for homologous peptide fragments using experimental backbone-only data i.e. backbone chemical shifts (CS) and residual dipolar couplings (RDC). Second, this fragment library is refined against the experimental restraints. Finally, the fragments are assembled into a protein backbone fold using a rigid body docking algorithm using the RDCs as restraints. For improved performance, backbone nuclear Overhauser effects (NOEs) may be included at that stage. Compared to previous implementations of MFR-derived structure determination protocols this model-building algorithm offers improved stability and reliability. Furthermore, relative to CS-ROSETTA based methods, it provides faster performance and straightforward implementation with the option to easily include further types of restraints and additional energy terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Hashimi HM, Valafar H, Terrell M, Zartler ER, Eidsness MK, Prestegard JH (2000) Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings. J Magn Reson 143(2):402–406

    Article  ADS  Google Scholar 

  • Andrec M, Du P, Levy RM (2001) Protein backbone structure determination using only residual dipolar couplings from one ordering medium. J Biomol NMR 21(4):335–347

    Article  Google Scholar 

  • Banci L, Bertini I, Cavallaro G, Giachetti A, Luchinat C, Parigi G (2004) Paramagnetism-based restraints for Xplor-NIH. J Biomol NMR 28(3):249–261

    Article  Google Scholar 

  • Bax A, Cornilescu G, Hu JS (1999) Identification of the hydrogen bonding network in a protein by scalar couplings. J Am Chem Soc 121(12):2949–2950

    Article  Google Scholar 

  • Bax A, Delaglio F, Kontaxis G (2000) Protein structure determination using molecular fragment replacement and NMR dipolar couplings. J Am Chem Soc 122(9):2142–2143

    Article  Google Scholar 

  • Bax A, Kontaxis G, Tjandra N (2001) Dipolar couplings in macromolecular structure determination. Methods Enzymol 339:127–174

    Article  Google Scholar 

  • Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476(7358):109–113

    Article  Google Scholar 

  • Bouvignies G, Markwick P, Bruschweiler R, Blackledge M (2006a) Simultaneous determination of protein backbone structure and dynamics from residual dipolar couplings. J Am Chem Soc 128(47):15100–15101

    Article  Google Scholar 

  • Bouvignies G, Meier S, Grzesiek S, Blackledge M (2006b) Ultrahigh-resolution backbone structure of perdeuterated protein GB1 using residual dipolar couplings from two alignment media. Angew Chem Int Ed Engl 45(48):8166–8169

    Article  Google Scholar 

  • Bouvignies G, Markwick PR, Blackledge M (2007) Simultaneous definition of high resolution protein structure and backbone conformational dynamics using NMR residual dipolar couplings. ChemPhysChem 8(13):1901–1909

    Article  Google Scholar 

  • Bowers PM, Strauss CE, Baker D (2000) De novo protein structure determination using sparse NMR data. J Biomol NMR 18(4):311–318

    Article  Google Scholar 

  • Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104(23):9615–9620

    Article  ADS  Google Scholar 

  • Chou JJ, Delaglio F, Bax A (2000a) Measurement of one-bond 15 N–13C’ dipolar couplings in medium sized proteins. J Biomol NMR 18(2):101–105

    Article  Google Scholar 

  • Chou JJ, Li S, Bax A (2000b) Study of conformational rearrangement and refinement of structural homology models by the use of heteronuclear dipolar couplings. J Biomol NMR 18(3):217–227

    Article  Google Scholar 

  • Clore GM (2000) Accurate and rapid docking of protein-protein complexes on the basis of intermolecular nuclear overhauser enhancement data and dipolar couplings by rigid body minimization. Proc Natl Acad Sci USA 97(16):9021–9025

    Article  ADS  Google Scholar 

  • Clore GM, Bewley CA (2002) Using conjoined rigid body/torsion angle simulated annealing to determine the relative orientation of covalently linked protein domains from dipolar couplings. J Magn Reson 154(2):329–335

    Article  ADS  Google Scholar 

  • Clore GM, Schwieters CD (2003) Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15 N chemical shift mapping and backbone 15 N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics. J Am Chem Soc 125(10):2902–2912

    Article  Google Scholar 

  • Clore GM, Kuszewski J, Gronenborn AM (1999) Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. J Am Chem Soc 121(10):2337–2338

    Article  Google Scholar 

  • Cordier F, Grzesiek S (1999) Direct observation of hydrogen bonds in proteins by interresidue (3 h) J (NC ‘) scalar couplings. J Am Chem Soc 121(7):1601–1602

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  Google Scholar 

  • Giesen AW, Homans SW, Brown JM (2003) Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints. J Biomol NMR 25(1):63–71

    Article  Google Scholar 

  • Hus JC, Marion D, Blackledge M (2001) Determination of protein backbone structure using only residual dipolar couplings. J Am Chem Soc 123(7):1541–1542

    Article  Google Scholar 

  • Jaroniec CP, Ulmer TS, Bax A (2004) Quantitative J correlation methods for the accurate measurement of 13C’-13Calpha dipolar couplings in proteins. J Biomol NMR 30(2):181–194

    Article  Google Scholar 

  • Kontaxis G, Delaglio F, Bax A (2005) Molecular fragment replacement approach to protein structure determination by chemical shift and dipolar homology database mining. Methods Enzymol 394:42–78

    Article  Google Scholar 

  • Koradi R, Billeter M, Wuthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(1):51–55 29–32

    Article  Google Scholar 

  • Kraulis PJ (1991) Molscript: a program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  • Kuszewski J, Clore GM (2000) Sources of and solutions to problems in the refinement of protein NMR structures against torsion angle potentials of mean force. J Magn Reson 146(2):249–254

    Article  ADS  Google Scholar 

  • Kuszewski J, Gronenborn AM, Clore GM (1996) Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Protein Sci 5(6):1067–1080

    Article  Google Scholar 

  • Kuszewski J, Gronenborn AM, Clore GM (1997) Improvements and extensions in the conformational database potential for the refinement of NMR and X-ray structures of proteins and nucleic acids. J Magn Reson 125(1):171–177

    Article  ADS  Google Scholar 

  • Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, Kaufman K, Renfrew PD, Smith CA, Sheffler W, Davis IW, Cooper S, Treuille A, Mandell DJ, Richter F, Ban YE, Fleishman SJ, Corn JE, Kim DE, Lyskov S, Berrondo M, Mentzer S, Popovic Z, Havranek JJ, Karanicolas J, Das R, Meiler J, Kortemme T, Gray JJ, Kuhlman B, Baker D, Bradley P (2011) ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol 487:545–574

    Article  Google Scholar 

  • Losonczi JA, Andrec M, Fischer MW, Prestegard JH (1999) Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson 138(2):334–342

    Article  ADS  Google Scholar 

  • Meiler J, Baker D (2003) Rapid protein fold determination using unassigned NMR data. Proc Natl Acad Sci USA 100(26):15404–15409

    Article  ADS  Google Scholar 

  • Merritt EA, Bacon DJ (1997) Raster3D: photorealistic molecular graphics. Methods Enzymol 277:505–524

    Article  Google Scholar 

  • Merritt EA, Murphy ME (1994) Raster3D Version 2. 0. A program for photorealistic molecular graphics. Acta Crystallogr D Biol Crystallogr 50(Pt 6):869–873

    Article  Google Scholar 

  • Ottiger M, Delaglio F, Bax A (1998a) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131(2):373–378

    Article  ADS  Google Scholar 

  • Ottiger M, Delaglio F, Marquardt JL, Tjandra N, Bax A (1998b) Measurement of dipolar couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure determination. J Magn Reson 134(2):365–369

    Article  ADS  Google Scholar 

  • Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini J, Liu G, Ramelot TA, Eletsky A, Szyperski T, Kennedy MA, Prestegard J, Montelione GT, Baker D (2010) NMR structure determination for larger proteins using backbone-only data. Science 327(5968):1014–1018

    Article  ADS  Google Scholar 

  • Ramirez BE, Voloshin ON, Camerini-Otero RD, Bax A (2000) Solution structure of DinI provides insight into its mode of RecA inactivation. Protein Sci 9(11):2161–2169

    Article  Google Scholar 

  • Rasia RM, Lescop E, Palatnik JF, Boisbouvier J, Brutscher B (2011) Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins. J Biomol NMR 51(3):369–378

    Article  Google Scholar 

  • Rohl CA, Baker D (2002) De novo determination of protein backbone structure from residual dipolar couplings using Rosetta. J Am Chem Soc 124(11):2723–2729

    Article  Google Scholar 

  • Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93

    Article  Google Scholar 

  • Sass J, Cordier F, Hoffmann A, Cousin A, Omichinski JG, Lowen H, Grzesiek S (1999) Purple membrane induced alignment of biological macromolecules in the magnetic field. J Am Chem Soc 121(10):2047–2055

    Article  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160(1):65–73

    Article  ADS  Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105(12):4685–4690

    Article  ADS  Google Scholar 

  • Shen Y, Vernon R, Baker D, Bax A (2009) De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR 43(2):63–78

    Article  Google Scholar 

  • Shen Y, Bryan PN, He Y, Orban J, Baker D, Bax A (2010) De novo structure generation using chemical shifts for proteins with high-sequence identity but different folds. Protein Sci 19(2):349–356

    Article  Google Scholar 

  • Simons KT, Bonneau R, Ruczinski I, Baker D (1999) Ab initio protein structure prediction of CASP III targets using ROSETTA. Proteins Suppl 3:171–176

    Article  Google Scholar 

  • Walsh JD, Wang YX (2005) Periodicity, planarity, residual dipolar coupling, and structures. J Magn Reson 174(1):152–162

    Article  ADS  Google Scholar 

  • Walsh JD, Kuszweski J, Wang YX (2005) Determining a helical protein structure using peptide pixels. J Magn Reson 177(1):155–159

    Article  ADS  Google Scholar 

  • Wang J, Walsh JD, Kuszewski J, Wang YX (2007) Periodicity, planarity, and pixel (3P): a program using the intrinsic residual dipolar coupling periodicity-to-peptide plane correlation and phi/psi angles to derive protein backbone structures. J Magn Reson 189(1):90–103

    Article  ADS  Google Scholar 

  • Wu Z, Delaglio F, Wyatt K, Wistow G, Bax A (2005) Solution structure of (gamma)S-crystallin by molecular fragment replacement NMR. Protein Sci 14(12):3101–3114

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Kontaxis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

mfrBuild.tcl (PDF 35 kb)

docking.inp (PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kontaxis, G. An improved algorithm for MFR fragment assembly. J Biomol NMR 53, 149–159 (2012). https://doi.org/10.1007/s10858-012-9632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9632-7

Keywords

Navigation