Advertisement

Journal of Biomolecular NMR

, Volume 52, Issue 4, pp 339–350 | Cite as

NMR analysis of Lys63-linked polyubiquitin recognition by the tandem ubiquitin-interacting motifs of Rap80

  • Naotaka Sekiyama
  • JunGoo Jee
  • Shin Isogai
  • Ken-ichi Akagi
  • Tai-huang Huang
  • Mariko Ariyoshi
  • Hidehito TochioEmail author
  • Masahiro ShirakawaEmail author
Article

Abstract

Ubiquitin is a post-translational modifier that is involved in cellular functions through its covalent attachment to target proteins. Ubiquitin can also be conjugated to itself at seven lysine residues and at its amino terminus to form eight linkage-specific polyubiquitin chains for individual cellular processes. The Lys63-linked polyubiquitin chain is recognized by tandem ubiquitin-interacting motifs (tUIMs) of Rap80 for the regulation of DNA repair. To understand the recognition mechanism between the Lys63-linked diubiquitin (K63-Ub2) and the tUIMs in solution, we determined the solution structure of the K63-Ub2:tUIMs complex by using NOE restraints and RDC data derived from NMR spectroscopy. The structure showed that the tUIMs adopts a nearly straight and single continuous α-helix, and the two ubiquitin units of the K63-Ub2 separately bind to each UIM motif. The interfaces are formed between Ile44-centered patches of the two ubiquitin units and the hydrophobic residues of the tUIMs. We also showed that the linker region between the two UIM motifs possesses a random-coil conformation in the free state, but undergoes the coil-to-helix transition upon complex formation, which simultaneously fixes the relative position of ubiquitin subunits. These data suggest that the relative position of ubiquitin subunits in the K63-Ub2:tUIMs complex is essential for linkage-specific binding of Rap80 tUIMs.

Keywords

Ubiquitin Lys63-linked polyubiquitin chains Rap80 Tandem ubiquitin-interacting motifs NMR spectroscopy 

Notes

Acknowledgments

We thank Dr. Akio Ojida and Dr. Itaru Hamachi for their help in collecting the ITC data, the NMR Facility of the Yokohama Institute at RIKEN and the High-field Biomacromolecular NMR Core Facility, National Research Program for Genomic Medicine, Taiwan, Republic of China, for collecting the NMR data. This work was supported by grants to M.S. and H.T. from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and the Japan Science and Technology Agency. This research was also supported in part by the Global COE Program “International Center for Integrated Research and Advanced Education in Materials Science” (No. B-09) of MEXT of Japan, administered by the Japan Society for the Promotion of Science.

Supplementary material

10858_2012_9614_MOESM1_ESM.pdf (691 kb)
Supplementary material 1 (PDF 690 kb)

References

  1. Berjanskii M, Neal S, Wishart D (2006) PREDITOR: a web server for predicting protein torsion angle restraints. Nucleic Acids Res 34:W63–W69CrossRefGoogle Scholar
  2. Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts BP, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA (2010) AMBER 11. University of California, San FranciscoGoogle Scholar
  3. Chou J, Gaemers S, Howder B, Louis J, Bax A (2001) A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J Biomol NMR 21:377–382CrossRefGoogle Scholar
  4. Delaglio F, Grzesiek S, Vuister G, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRefGoogle Scholar
  5. Diercks T, Cole M, Kessler H (1999) An efficient strategy for assignment of cross-peaks in 3D heteronuclear NOESY experiments. J Biomol NMR 15:177–180CrossRefGoogle Scholar
  6. Dosset P, Hus J, Marion D, Blackledge M (2001) A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. J Biomol NMR 20:223–231CrossRefGoogle Scholar
  7. Eddins M, Varadan R, Fushman D, Pickart C, Wolberger C (2007) Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. J Mol Biol 367:204–211CrossRefGoogle Scholar
  8. Fisher R, Wang B, Alam S, Higginson D, Robinson H, Sundquist W, Hill C (2003) Structure and ubiquitin binding of the ubiquitin-interacting motif. J Biol Chem 278:28976–28984CrossRefGoogle Scholar
  9. Goddard TD, Kneller DG. SPARKY 3. University of California, San FranciscoGoogle Scholar
  10. Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298CrossRefGoogle Scholar
  11. Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227CrossRefGoogle Scholar
  12. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479CrossRefGoogle Scholar
  13. Hicke L (2001) Protein regulation by monoubiquitin. Natl Rev Mol Cell Biol 2:195–201CrossRefGoogle Scholar
  14. Hicke L, Schubert H, Hill C (2005) Ubiquitin-binding domains. Natl Rev Mol Cell Biol 6:610–621CrossRefGoogle Scholar
  15. Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. ‘Protein modifications: beyond review series the usual suspects’. EMBO Rep 9:536–542CrossRefGoogle Scholar
  16. Ikegami T, Kuraoka I, Saijo M, Kodo N, Kyogoku Y, Morikawa K, Tanaka K, Shirakawa M (1999) Resonance assignments, solution structure, and backbone dynamics of the DNA- and RPA-binding domain of human repair factor XPA. J Biochem 125:495–506Google Scholar
  17. Ito T, Wagner G (2004) Using codon optimization, chaperone co-expression, and rational mutagenesis for production and NMR assignments of human eIF2 alpha. J Biomol NMR 28:357–367CrossRefGoogle Scholar
  18. Kim H, Chen J, Yu X (2007) Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316:1202–1205ADSCrossRefGoogle Scholar
  19. Komander D, Reyes-Turcu F, Licchesi J, Odenwaelder P, Wilkinson K, Barford D (2009) Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep 10:466–473CrossRefGoogle Scholar
  20. Kulathu Y, Akutsu M, Bremm A, Hofmann K, Komander D (2009) Two-sided ubiquitin binding explains specificity of the TAB 2 NZF domain. Nat Struct Mol Biol 16:1328–1330CrossRefGoogle Scholar
  21. Laskowski R, Macarthur M, Moss D, Thornton J (1993) PROCHECK - A program to check the stereochemical qualith of protein structures. J Appl Cryst 26:283–291CrossRefGoogle Scholar
  22. Markin C, Xiao W, Spyracopoulos L (2010) Mechanism for recognition of polyubiquitin chains: balancing affinity through interplay between multivalent binding and dynamics. J Am Chem Soc 132:11247–11258CrossRefGoogle Scholar
  23. Newton K, Matsumoto M, Wertz I, Kirkpatrick D, Lill J, Tan J, Dugger D, Gordon N, Sidhu S, Fellouse F, Komuves L, French D, Ferrando R, Lam C, Compaan D, Yu C, Bosanac I, Hymowitz S, Kelley R, Dixit V (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134:668–678CrossRefGoogle Scholar
  24. Nozaki Y, Tanford C (1971) The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. Establishment of a hydrophobicity scale. J Biol Chem 246:2211–2217Google Scholar
  25. Pickart C, Fushman D (2004) Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 8:610–616CrossRefGoogle Scholar
  26. Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I (2009) Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136:1098–1109CrossRefGoogle Scholar
  27. Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, Ookata K, Nureki O, Iwai K, Komada M, Fukai S (2008) Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature 455:358–362ADSCrossRefGoogle Scholar
  28. Sato Y, Yoshikawa A, Mimura H, Yamashita M, Yamagata A, Fukai S (2009a) Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. EMBO J 28:2461–2468CrossRefGoogle Scholar
  29. Sato Y, Yoshikawa A, Yamashita M, Yamagata A, Fukai S (2009b) Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB 2 and TAB 3. EMBO J 28:3903–3909CrossRefGoogle Scholar
  30. Sims J, Cohen R (2009) Linkage-specific avidity defines the lysine 63-linked polyubiquitin-binding preference of rap80. Mol Cell 33:775–783CrossRefGoogle Scholar
  31. Sobhian B, Shao G, Lilli D, Culhane A, Moreau L, Xia B, Livingston D, Greenberg R (2007) RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316:1198–1202ADSCrossRefGoogle Scholar
  32. Swanson K, Kang R, Stamenova S, Hicke L, Radhakrishnan I (2003) Solution structure of Vps27 UIM-ubiquitin complex important for endosomal sorting and receptor downregulation. EMBO J 22:4597–4606CrossRefGoogle Scholar
  33. Tenno T, Fujiwara K, Tochio H, Iwai K, Morita E, Hayashi H, Murata S, Hiroaki H, Sato M, Tanaka K, Shirakawa M (2004) Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes Cells 9:865–875CrossRefGoogle Scholar
  34. Varadan R, Assfalg M, Haririnia A, Raasi S, Pickart C, Fushman D (2004) Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J Biol Chem 279:7055–7063CrossRefGoogle Scholar
  35. Wang Y-X, Marquardt JL, Wingfield P, Stahl SJ, Lee-Huang S, Torchia D, Bax A (1998) Simultaneous measurement of 1H–15 N, 1H–13C‘, and 15 N − 13C‘dipolar couplings in a perdeuterated 30 kDa protein dissolved in a dilute liquid crystalline phase. J Am Chem Soc 120:7385–7386CrossRefGoogle Scholar
  36. Wang Q, Goh A, Howley P, Walters K (2003) Ubiquitin recognition by the DNA repair protein hHR23a. Biochemistry 42:13529–13535CrossRefGoogle Scholar
  37. Wang Q, Young P, Walters K (2005) Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. J Mol Biol 348:727–739CrossRefGoogle Scholar
  38. Wishart D, Sykes B, Richards F (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333CrossRefGoogle Scholar
  39. Young P, Deveraux Q, Beal R, Pickart C, Rechsteiner M (1998) Characterization of two polyubiquitin binding sites in the 26 S protease subunit 5a. J Biol Chem 273:5461–5467CrossRefGoogle Scholar
  40. Zhang N, Wang Q, Ehlinger A, Randles L, Lary J, Kang Y, Haririnia A, Storaska A, Cole J, Fushman D, Walters K (2009) Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13. Mol Cell 35:280–290CrossRefGoogle Scholar
  41. Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: Aid to protein structure determination by NMR. J Am Chem Soc 122:3791–3792CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Naotaka Sekiyama
    • 1
  • JunGoo Jee
    • 2
  • Shin Isogai
    • 1
  • Ken-ichi Akagi
    • 3
  • Tai-huang Huang
    • 4
  • Mariko Ariyoshi
    • 1
    • 7
    • 8
  • Hidehito Tochio
    • 1
    Email author
  • Masahiro Shirakawa
    • 1
    • 5
    • 6
    Email author
  1. 1.Graduate School of EngineeringKyoto UniversityKyotoJapan
  2. 2.Center for Priority AreasTokyo Metropolitan UniversityHachioji, TokyoJapan
  3. 3.Section of Laboratory EquipmentsNational Institute of Biomedical InnovationIbaraki, OsakaJapan
  4. 4.Division of Structural Biology, Institute of Biomedical SciencesAcademia SinicaNankang, TaipeiTaiwan
  5. 5.CREST, Japan Science and Technology CorporationKawaguchi, SaitamaJapan
  6. 6.Genome Science CenterRIKENTsurumi, YokohamaJapan
  7. 7.Institute for Integrated Cell-Material Sciences (iCeMS)Kyoto UniversityKyoto Japan
  8. 8.Japan Science and Technology PRESTOSaitama Japan

Personalised recommendations