Skip to main content

Advertisement

Log in

Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS2) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS2-tag is replaced with non-isotope labeled PrS2-tag, silencing the NMR signals from PrS2-tag in isotope-filtered 1H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS2-tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS2-tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS2-tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1H, 15N and 13C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1H–15N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  Google Scholar 

  • di Guan C, Li P, Riggs PD, Inouye H (1988) Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67(1):21–30

    Article  Google Scholar 

  • Durst FG, Ou HD, Lohr F, Dotsch V, Straub WE (2008) The better tag remains unseen. J Am Chem Soc 130(45):14932–14933

    Article  Google Scholar 

  • Elleuche S, Poggeler S (2010) Inteins, valuable genetic elements in molecular biology and biotechnology. Appl Microbiol Biotechnol 87(2):479–489

    Article  Google Scholar 

  • Esposito D, Chatterjee DK (2006) Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotechnol 17(4):353–358

    Article  Google Scholar 

  • Etchegaray JP, Inouye M (1999) Translational enhancement by an element downstream of the initiation codon in Escherichia coli. J Biol Chem 274(15):10079–10085

    Article  Google Scholar 

  • Fox JD, Kapust RB, Waugh DS (2001) Single amino acid substitutions on the surface of Escherichia coli maltose-binding protein can have a profound impact on the solubility of fusion proteins. Protein Sci 10(3):622–630

    Article  Google Scholar 

  • Harlocker SL, Bergstrom L, Inouye M (1995) Tandem binding of six OmpR proteins to the ompF upstream regulatory sequence of Escherichia coli. J Biol Chem 270(45):26849–26856

    Article  Google Scholar 

  • Huang YJ, Swapna GV, Rajan PK, Ke H, Xia B, Shukla K, Inouye M, Montelione GT (2003) Solution NMR structure of ribosome-binding factor A (RbfA), a cold-shock adaptation protein from Escherichia coli. J Mol Biol 327(2):521–536

    Article  Google Scholar 

  • Huth JR, Bewley CA, Jackson BM, Hinnebusch AG, Clore GM, Gronenborn AM (1997) Design of an expression system for detecting folded protein domains and mapping macromolecular interactions by NMR. Protein Sci 6(11):2359–2364

    Article  Google Scholar 

  • Inouye M, Inouye S, Zusman DR (1979) Biosynthesis and self-assembly of protein S, a development-specific protein of Myxococcus xanthus. Proc Natl Acad Sci USA 76(1):209–213

    Article  ADS  Google Scholar 

  • Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Mei Ono A, Guntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440(7080):52–57

    Article  ADS  Google Scholar 

  • Kishii R, Falzon L, Yoshida T, Kobayashi H, Inouye M (2007) Structural and functional studies of the HAMP domain of EnvZ, an osmosensing transmembrane histidine kinase in Escherichia coli. J Biol Chem 282(36):26401–26408

    Article  Google Scholar 

  • Kobashigawa Y, Kumeta H, Ogura K, Inagaki F (2009) Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. J Biomol NMR 43(3):145–150

    Article  Google Scholar 

  • Kobayashi H, Yoshida T, Inouye M (2009) Significant enhanced expression and solubility of human proteins in Escherichia coli by fusion with protein S from Myxococcus xanthus. Appl Environ Microbiol 75(16):5356–5362

    Article  Google Scholar 

  • Lockless SW, Muir TW (2009) Traceless protein splicing utilizing evolved split inteins. Proc Natl Acad Sci USA 106(27):10999–11004

    Article  ADS  Google Scholar 

  • Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Nucl Magn Reson Biol Macromol 339(Pt B):91–108

    Article  Google Scholar 

  • Moseley HN, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28(4):341–355

    Article  Google Scholar 

  • Muona M, Aranko AS, Raulinaitis V, Iwai H (2010) Segmental isotopic labeling of multi-domain and fusion proteins by protein trans-splicing in vivo and in vitro. Nat Protoc 5(3):574–587

    Article  Google Scholar 

  • Otomo T, Teruya K, Uegaki K, Yamazaki T, Kyogoku Y (1999) Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR 14(2):105–114

    Article  Google Scholar 

  • Qing G, Ma LC, Khorchid A, Swapna GV, Mal TK, Takayama MM, Xia B, Phadtare S, Ke H, Acton T et al (2004) Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol 22(7):877–882

    Article  Google Scholar 

  • Romanelli A, Shekhtman A, Cowburn D, Muir TW (2004) Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proc Natl Acad Sci USA 101(17):6397–6402

    Article  ADS  Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A et al (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105(12):4685–4690

    Article  ADS  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223

    Article  Google Scholar 

  • Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67(1):31–40

    Article  Google Scholar 

  • Southworth MW, Adam E, Panne D, Byer R, Kautz R, Perler FB (1998) Control of protein splicing by intein fragment reassembly. EMBO J 17(4):918–926

    Article  Google Scholar 

  • Suzuki M, Zhang J, Liu M, Woychik NA, Inouye M (2005) Single protein production in living cells facilitated by an mRNA interferase. Mol Cell 18(2):253–261

    Article  Google Scholar 

  • Suzuki M, Roy R, Zheng H, Woychik N, Inouye M (2006) Bacterial bioreactors for high yield production of recombinant protein. J Biol Chem 281(49):37559–37565

    Article  Google Scholar 

  • Swapna GV, Shukla K, Huang YJ, Ke H, Xia B, Inouye M, Montelione GT (2001) Resonance assignments for cold-shock protein ribosome-binding factor A (RbfA) from Escherichia coli. J Biomol NMR 21(4):389–390

    Article  Google Scholar 

  • Yamazaki T (1998) Segmental Isotope Labeling for Protein NMR Using Peptiide Splicing. J Am Chem Soc 120:2

    Article  Google Scholar 

  • Zhou P, Wagner G (2010) Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies. J Biomol NMR 46(1):23–31

    Article  Google Scholar 

  • Zhou P, Lugovskoy AA, McCarty JS, Li P, Wagner G (2001a) Solution structure of DFF40 and DFF45 N-terminal domain complex and mutual chaperone activity of DFF40 and DFF45. Proc Natl Acad Sci USA 98(11):6051–6055

    Article  ADS  Google Scholar 

  • Zhou P, Lugovskoy AA, Wagner G (2001b) A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins. J Biomol NMR 20(1):11–14

    Article  Google Scholar 

  • Zimmerman DE, Kulikowski CA, Huang Y, Feng W, Tashiro M, Shimotakahara S, Chien C, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269(4):592–610

    Article  Google Scholar 

  • Züger S, Iwai H (2005) Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat Biotechnol 23(6):736–740

    Article  Google Scholar 

Download references

Acknowledgements

We thank Tom W. Muir (Rockefeller University) and Yohei Miyanoiri (Nagoya University) for helpful discussions. This work was supported in part by the National Institutes of General Medical Science Protein Structure Initiative (PSI-Biology) program, grant U54 GM 094597 (to G. T. M).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayori Inouye.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kobayashi, H., Swapna, G.V.T., Wu, KP. et al. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility. J Biomol NMR 52, 303–313 (2012). https://doi.org/10.1007/s10858-012-9610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-012-9610-0

Keywords

Navigation