Skip to main content
Log in

A procedure to validate and correct the 13C chemical shift calibration of RNA datasets

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Chemical shifts reflect the structural environment of a certain nucleus and can be used to extract structural and dynamic information. Proper calibration is indispensable to extract such information from chemical shifts. Whereas a variety of procedures exist to verify the chemical shift calibration for proteins, no such procedure is available for RNAs to date. We present here a procedure to analyze and correct the calibration of 13C NMR data of RNAs. Our procedure uses five 13C chemical shifts as a reference, each of them found in a narrow shift range in most datasets deposited in the Biological Magnetic Resonance Bank. In 49 datasets we could evaluate the 13C calibration and detect errors or inconsistencies in RNA 13C chemical shifts based on these chemical shift reference values. More than half of the datasets (27 out of those 49) were found to be improperly referenced or contained inconsistencies. This large inconsistency rate possibly explains that no clear structure–13C chemical shift relationship has emerged for RNA so far. We were able to recalibrate or correct 17 datasets resulting in 39 usable 13C datasets. 6 new datasets from our lab were used to verify our method increasing the database to 45 usable datasets. We can now search for structure–chemical shift relationships with this improved list of 13C chemical shift data. This is demonstrated by a clear relationship between ribose 13C shifts and the sugar pucker, which can be used to predict a C2′- or C3′-endo conformation of the ribose with high accuracy. The improved quality of the chemical shift data allows statistical analysis with the potential to facilitate assignment procedures, and the extraction of restraints for structure calculations of RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Butcher SE, Dieckmann T, Feigon J (1997) Solution structure of the conserved 16 S-like ribosomal RNA UGAA tetraloop. J Mol Biol 268:348–358

    Article  Google Scholar 

  • Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615–9620

    Article  ADS  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Duarte CM, Pyle AM (1998) Stepping through an RNA structure: a novel approach to conformational analysis. J Mol Biol 284:1465–1478

    Article  Google Scholar 

  • Ebrahimi M, Rossi P, Rogers C, Harbison GS (2001) Dependence of 13C NMR chemical shifts on conformations of rna nucleosides and nucleotides. J Magn Reson 150:1–9

    Article  ADS  Google Scholar 

  • Fares C, Amata I, Carlomagno T (2007) 13C-detection in RNA bases: revealing structure-chemical shift relationships. J Am Chem Soc 129:15814–15823

    Article  Google Scholar 

  • Findeisen M, Brand T, Berger S (2007) A 1H-NMR thermometer suitable for cryoprobes. Magn Reson Chem 45:175–178

    Article  Google Scholar 

  • Ginzinger SW, Gerick F, Coles M, Heun V (2007) CheckShift: automatic correction of inconsistent chemical shift referencing. J Biomol NMR 39:223–227

    Article  Google Scholar 

  • Goddard TD, Kneller DG (1999) SPARKY 3. University of California, San Francisco

  • Grzesiek S, Bax A (1993) Amino acid type determination in the sequential assignment procedure of uniformly 13C/15 N-enriched proteins. J Biomol NMR 3:185–204

    Google Scholar 

  • Jucker FM, Pardi A (1995) Solution structure of the CUUG hairpin loop: a novel RNA tetraloop motif. Biochemistry 34:14416–14427

    Article  Google Scholar 

  • Lam SL, Chi LM (2010) Use of chemical shifts for structural studies of nucleic acids. Prog Nucl Magn Reson Spectrosc 56:289–310

    Article  Google Scholar 

  • Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wuthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. J Biomol NMR 12:1–23

    Article  Google Scholar 

  • Meyer SL (1975) Data analysis for scientists and engineers. Wiley, New York

    Google Scholar 

  • Morcombe CR, Zilm KW (2003) Chemical shift referencing in MAS solid state NMR. J Magn Reson 162:479–486

    Article  ADS  Google Scholar 

  • Mulder FA, Filatov M (2010) NMR chemical shift data and ab initio shielding calculations: emerging tools for protein structure determination. Chem Soc Rev 39:578–590

    Article  Google Scholar 

  • Oberstrass FC, Lee A, Stefl R, Janis M, Chanfreau G, Allain FH (2006) Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nat Struct Mol Biol 13:160–167

    Article  Google Scholar 

  • Ohlenschlager O, Haumann S, Ramachandran R, Gorlach M (2008) Conformational signatures of 13C chemical shifts in RNA ribose. J Biomol NMR 42:139–142

    Article  Google Scholar 

  • SantaLucia J Jr, Turner DH (1993) Structure of (rGGCGAGCC)2 in solution from NMR and restrained molecular dynamics. Biochemistry 32:12612–12623

    Article  Google Scholar 

  • Schubert M, Labudde D, Oschkinat H, Schmieder P (2002) A software tool for the prediction of Xaa-Pro peptide bond conformations in proteins based on 13C chemical shift statistics. J Biomol NMR 24:149–154

    Article  Google Scholar 

  • Schubert M, Lapouge K, Duss O, Oberstrass FC, Jelesarov I, Haas D, Allain FH (2007) Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat Struct Mol Biol 14:807–813

    Article  Google Scholar 

  • Seavey BR, Farr EA, Westler W, Markley JL (1991) A relational database for sequence-specific protein NMR data. J Biomol NMR 1:217–236

    Article  Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    Article  ADS  Google Scholar 

  • Sich C, Ohlenschlager O, Ramachandran R, Gorlach M, Brown LR (1997) Structure of an RNA hairpin loop with a 5′-CGUUUCG-3′ loop motif by heteronuclear NMR spectroscopy and distance geometry. Biochemistry 36:13989–14002

    Article  Google Scholar 

  • Smith JS, Nikonowicz EP (1998) NMR structure and dynamics of an RNA motif common to the spliceosome branch-point helix and the RNA-binding site for phage GA coat protein. Biochemistry 37:13486–13498

    Article  Google Scholar 

  • Szewczak AA, Moore PB (1995) The sarcin/ricin loop, a modular RNA. J Mol Biol 247:81–98

    Article  Google Scholar 

  • Varani G, Tinoco I (1991) Carbon assignments and heteronuclear coupling-constants for an Rna oligonucleotide from natural abundance C-13-H-1 correlated experiments. J Am Chem Soc 113:9349–9354

    Article  Google Scholar 

  • Varani G, Aboulela F, Allain FHT (1996) NMR investigation of RNA structure. Prog Nucl Magn Reson Spectrosc 29:51–127

    Article  Google Scholar 

  • Wang Y, Wishart DS (2005) A simple method to adjust inconsistently referenced 13C and 15 N chemical shift assignments of proteins. J Biomol NMR 31:143–148

    Article  MATH  Google Scholar 

  • Wishart DS, Case DA (2001) Use of chemical shifts in macromolecular structure determination. Methods Enzymol 338:3–34

    Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31:1647–1651

    Article  Google Scholar 

  • Wishart DS, Bigam CG, Yao J, Abildgaard F, Dyson HJ, Oldfield E, Markley JL, Sykes BD (1995) 1H, 13C and 15 N chemical shift referencing in biomolecular NMR. J Biomol NMR 6:135–140

    Article  Google Scholar 

  • Wishart DS, Arndt D, Berjanskii M, Tang P, Zhou J, Lin G (2008) CS23D: a web server for rapid protein structure generation using NMR chemical shifts and sequence data. Nucleic Acids Res 36:W496–W502

    Article  Google Scholar 

  • Zhang H, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195

    Article  Google Scholar 

Download references

Acknowledgment

We like to thank Olivier Duss for providing spectra of the two stem-loops FZL2 and FZL4, Wolfgang Bermel and Peter Schmieder for helpful discussions concerning chemical shift referencing. Further we are grateful to Peter Lukavsky for beneficial discussions of the C1′ chemical shift dependence on the ribose pucker and Fred Damberger for his comments on the manuscript. We thank Ryan Mackay and Lawrence P. McIntosh for their help regarding chemical shift calibration with Varian software. This work was supported by SNF-NCCR structural biology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mario Schubert or Frédéric H.-T. Allain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 658 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aeschbacher, T., Schubert, M. & Allain, F.HT. A procedure to validate and correct the 13C chemical shift calibration of RNA datasets. J Biomol NMR 52, 179–190 (2012). https://doi.org/10.1007/s10858-011-9600-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-011-9600-7

Keywords

Navigation