Skip to main content
Log in

Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

One bottleneck in NMR structure determination lies in the laborious and time-consuming process of side-chain resonance and NOE assignments. Compared to the well-studied backbone resonance assignment problem, automated side-chain resonance and NOE assignments are relatively less explored. Most NOE assignment algorithms require nearly complete side-chain resonance assignments from a series of through-bond experiments such as HCCH-TOCSY or HCCCONH. Unfortunately, these TOCSY experiments perform poorly on large proteins. To overcome this deficiency, we present a novel algorithm, called Nasca (NOE Assignment and Side-Chain Assignment), to automate both side-chain resonance and NOE assignments and to perform high-resolution protein structure determination in the absence of any explicit through-bond experiment to facilitate side-chain resonance assignment, such as HCCH-TOCSY. After casting the assignment problem into a Markov Random Field (MRF), Nasca extends and applies combinatorial protein design algorithms to compute optimal assignments that best interpret the NMR data. The MRF captures the contact map information of the protein derived from NOESY spectra, exploits the backbone structural information determined by RDCs, and considers all possible side-chain rotamers. The complexity of the combinatorial search is reduced by using a dead-end elimination (DEE) algorithm, which prunes side-chain resonance assignments that are provably not part of the optimal solution. Then an A* search algorithm is employed to find a set of optimal side-chain resonance assignments that best fit the NMR data. These side-chain resonance assignments are then used to resolve the NOE assignment ambiguity and compute high-resolution protein structures. Tests on five proteins show that Nasca assigns resonances for more than 90% of side-chain protons, and achieves about 80% correct assignments. The final structures computed using the NOE distance restraints assigned by Nasca have backbone RMSD 0.8–1.5 Å from the reference structures determined by traditional NMR approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NMR:

Nuclear magnetic resonance

ppm:

Parts per million

RMSD:

Root mean square deviation

HSQC:

Heteronuclear single quantum coherence spectroscopy

NOE:

Nuclear Overhauser effect

NOESY:

Nuclear Overhauser and exchange spectroscopy

TOCSY:

Total correlation spectroscopy

TROSY:

Transverse relaxation-optimized spectroscopy

RDC:

Residual dipolar coupling

PDB:

Protein Data Bank

BMRB:

Biological Magnetic Resonance Bank

pol η UBZ:

Ubiquitin-binding zinc finger domain of the human Y-family DNA polymerase Eta

hSRI:

Human Set2-Rpb1 interacting domain

FF2:

FF Domain 2 of human transcription elongation factor CA150

GB1:

B1 domain of Protein G

CH:

Cα−Hα

SSE:

Secondary structure element

\(\hbox{C}^{\prime}\) :

Carbonyl carbon

MRF:

Markov Random Field

DEE:

Dead-end elimination

GMEC:

Global minimum energy conformation

SA:

Simulated annealing

MD:

Molecular dynamics

\({\mathbb{R}}^3\) :

3-Dimensional Euclidean space

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Google Scholar 

  • Atreya HS, Sahu SC, Chary KV, Govil G (2000) A tracked approach for automated nmr assignments in proteins (tatapro). J Biomol NMR 17(2):125–136

    Article  Google Scholar 

  • Bahrami A, Assadi AH, Markley JL, Eghbalnia HR (2009) Probabilistic interaction network of evidence algorithm and its application to complete labeling of peak lists from protein NMR spectroscopy. PLoS Comput Biol 5(3):e1000307

    Article  Google Scholar 

  • Bailey-Kellogg C, Chainraj S, Pandurangan G (2005) A random graph approach to NMR sequential assignment. J Comput Biol 12(6):569–583

    Article  Google Scholar 

  • Bailey-Kellogg C, Widge A, Kelley JJ, Berardi MJ, Bushweller JH, Donald BR (2000) The NOESY jigsaw: automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data. J Comput Biol 7(3-4):537–558

    Article  Google Scholar 

  • Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294:93–96

    Article  ADS  Google Scholar 

  • Ball G, Meenan N, Bromek K, Smith BO, Bella J, Uhrín D (2006) Measurement of one-bond 13Cα1Hα residual dipolar coupling constants in proteins by selective manipulation of CαHα spins. J Magn Reson 180:127–136

    Article  ADS  Google Scholar 

  • Baran MC, Huang YJ, Moseley HN, Montelione GT (2004) Automated analysis of protein NMR assignments and structures. Chem Rev 104:3541–3456

    Article  Google Scholar 

  • Bartels C, Xia T, Billeter M, Güntert P, Wüthrich K (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 6:1–10

    Article  Google Scholar 

  • Besag J (1974) Spatial interaction and the statistical analysis of lattice systems. J R Stat Soc B 36

  • Bomar MG, Pai M, Tzeng S, Li S, Zhou P (2007) Structure of the ubiquitin-binding zinc finger domain of human DNA Y-polymerase η. EMBO Reports 8:247–251

    Article  Google Scholar 

  • Boykov Y, Veksler O, Zabih R (1998) Markov random fields with efficient approximations. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition, p 648

  • Chen C, Georgiev I, Anderson A, Donald B (2009) Computational structure-based redesign of enzyme activity. Proc Natl Acad Sci USA 106:3764–3769

    Article  ADS  Google Scholar 

  • Choy WY, Tollinger M, Mueller GA, Kay LE (2001) Direct structure refinement of high molecular weight proteins against residual dipolar couplings and carbonyl chemical shift changes upon alignment: an application to maltose binding protein. J Biomol NMR 21(1):31–40

    Article  Google Scholar 

  • Coggins BE, Zhou P (2003) PACES: protein sequential assignment by computer-assisted exhaustive search. J Biomol NMR 26:93–111

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120:6836–6837

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Desmet J, Maeyer M, Hazes B, Lasters I (1992) The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356:539–542

    Article  ADS  Google Scholar 

  • Donald BR, Martin J (2009) Automated NMR assignment and protein structure determination using sparse dipolar coupling constraints. Prog NMR Spectrosc 55:101–127

    Article  Google Scholar 

  • Eghbalnia H, Bahrami A, Wang L, Assadi A, Markley J (2005) Probabilistic identification of spin systems and their assignments including coil-helix inference as output (PISTACHIO). J Biomol NMR 32:219–33

    Article  Google Scholar 

  • Fiorito F, Herrmann T, Damberger F, Wüthrich K (2008) Automated amino acid side-chain NMR assignment of proteins using (13)C- and (15)N-resolved 3D [(1)H, (1)H]-NOESY. J Biomol NMR 42:23–33

    Article  Google Scholar 

  • Fowler CA, Tian F, Al-Hashimi HM, Prestegard JH (2000) Rapid determination of protein folds using residual dipolar couplings. J Mol Biol 304:447–460

    Article  Google Scholar 

  • Georgiev I, Lilien RH, Donald BR (2008) The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. J Comput Chem 29:1527–1542

    Article  Google Scholar 

  • GNU (2007) Free Software Foundation, GNU Lesser General Public License. http://www.gnu.org/copyleft/lesser.html

  • Goldstein RF (1994) Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys J 66:1335–1340

    Article  Google Scholar 

  • Goto N, Gardner K, Mueller G, Willis R, Kay L (1999) A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-,  13C-,  2H-labeled proteins. J Biomol NMR 13:369–374

    Article  Google Scholar 

  • Grishaev A, Llinás M (2002) CLOUDS, a protocol for deriving a molecular proton density via NMR. Proc Natl Acad Sci USA 99:6707–6712

    Article  ADS  Google Scholar 

  • Grishaev A, Llinás M (2002) Protein structure elucidation from NMR proton densities. Proc Natl Acad Sci USA 99:6713–6718

    Article  ADS  Google Scholar 

  • Gronwald W, Moussa S, Elsner R, Jung A, Ganslmeier B, Trenner J, Kremer W, Neidig K-P, Kalbitzer HR (2002) Automated assignment of NOESY NMR spectra using a knowledge based method (KNOWNOE). J Biomol NMR 23:271–287

    Article  Google Scholar 

  • Güntert P (2003) Automated NMR protein structure determination. Prog Nucl Magn Reson Spectrosc 43:105–125

    Article  Google Scholar 

  • Hammersley JM, Clifford P (1971) Markov field on finite graphs and lattices (unpublished)

  • Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319(1):209–227

    Article  Google Scholar 

  • Huang YJ, Tejero R, Powers R, Montelione GT (2006) A topology-constrained distance network algorithm for protein structure determination from noesy data. Proteins 62(3):587–603

    Article  Google Scholar 

  • Huttenlocher DP, Jaquith EW (1995) Computing visual correspondence: incorporating the probability of a false match. In: Procedings of the fifth international conference on computer vision (ICCV 95), pp 515–522

  • Huttenlocher DP, Kedem K (1992) Distance metrics for comparing shapes in the plane. In: Donald BR, Kapur D, Mundy J (eds) Symbolic and numerical computation for artificial intelligence. Academic press, London, pp 201–219

    Google Scholar 

  • Huttenlocher DP, Klanderman GA, Rucklidge W (1993) Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15(9):850–863

    Article  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMRView: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  Google Scholar 

  • Juszewski K, Gronenborn AM, Clore GM (1999) Improving the packing and accuracy of NMR structures with a pseudopotential for the radius of gyration. J Am Chem Soc 121:2337–2338

    Article  Google Scholar 

  • Kamisetty H, Bailey-Kellogg C, Pandurangan G (2006) An efficient randomized algorithm for contact-based NMR backbone resonance assignment. Bioinformatics 22(2):172–180

    Article  Google Scholar 

  • Kamisetty H, Xing E, Langmead C (2008) Free energy estimates of all-atom protein structures using generalized belief propagation. J Comput Biol 15:755–766

    Article  MathSciNet  Google Scholar 

  • Kindermann R, Snell J (1980) Markov random fields and their applications. American Mathematical Society, Providence

    Book  MATH  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14(1):51–55

    Google Scholar 

  • Kuszewski J, Schwieters CD, Garrett DS, Byrd RA, Tjandra N, Clore GM (2004) Completely automated, highly error-tolerant macromolecular structure determination from multidimensional nuclear overhauser enhancement spectra and chemical shift assignments. J Am Chem Soc 126(20):6258–6273

    Article  Google Scholar 

  • Kuszewski J, Thottungal R, Clore G, Schwieters C (2008) Automated error-tolerant macromolecular structure determination from multidimensional nuclear overhauser enhancement spectra and chemical shift assignments: improved robustness and performance of the PASD algorithm. J Biomol NMR 41(4):221–239

    Article  Google Scholar 

  • Langmead C, Donald B (2004) An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. J Biomol NMR 29(2):111–138

    Article  Google Scholar 

  • Langmead CJ, Donald BR (2003) 3D structural homology detection via unassigned residual dipolar couplings. In: Procedings of 2003 IEEE comput syst bioinform conf, pp 209–217

  • Langmead CJ, Donald BR (2004b) High-throughput 3D structural homology detection via NMR resonance assignment. In: Procedings of 2004 IEEE comput syst bioinform conf, pp. 278–289

  • Langmead CJ, Yan AK, Lilien RH, Wang L, Donald BR (2003) A polynomial-time nuclear vector replacement algorithm for automated NMR resonance assignments. In: Proceedings of the seventh annual international conference on research in computational molecular biology, pp 176–187

  • Leach A, Lemon A (1998) Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins 33(2):227–239

    Article  Google Scholar 

  • Lemak A, Gutmanas A, Chitayat S, Karra M, Farès C, Sunnerhagen M, Arrowsmith CH (2011) A novel strategy for nmr resonance assignment and protein structure determination. J Biomol NMR 49(1):27–38

    Article  Google Scholar 

  • Lemak A, Steren CA, Arrowsmith CH, Llinás M (2008) Sequence specific resonance assignment via multicanonical monte carlo search using an abacus approach. J Biomol NMR 41(1):29–41

    Article  Google Scholar 

  • Li K, Sanctuary B (1996) Automated extracting of amino acid spin systems in proteins using 3D HCCH-COSY/TOCSY spectroscopy and constrained partitioning algorithm (CPA). J Chem Inf Comput Sci 36:585–593

    Article  Google Scholar 

  • Li K, Sanctuary B (1997) Automated resonance assignment of proteins using heteronuclear 3D NMR. 2. Side chain and sequence-specific assignment. J Chem Inf Comput Sci 37:467–477

    Article  Google Scholar 

  • Li M, Phatnani HP, Guan Z, Sage H, Greenleaf AL, Zhou P (2005) Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. Proc Natl Acad Sci 102:17636–17641

    Article  ADS  Google Scholar 

  • Lin Y, Wagner G (1999) Efficient side-chain and backbone assignment in large proteins: application to tGCN5. J Biomol NMR 15:227–239

    Article  Google Scholar 

  • Linge JP, Habeck M, Rieping W, Nilges M (2003) ARIA: Automated NOE assignment and NMR structure calculation. Bioinformatics 19(2):315–316

    Article  Google Scholar 

  • Looger L, Hellinga H (2001) Generalized dead-end elimination algorithms make large-scale protein side-chain structure prediction tractable: implications for protein design and structural genomics. J Mol Biol 3007(1):429–445

    Article  Google Scholar 

  • Lovell SC, Word JM, Richardson JS, Richardson DC (2000) The penultimate rotamer library. Proteins: Structure, Function and Genetics 40:389–408

    Article  Google Scholar 

  • Masse J, Keller R, Pervushin K (2006) SideLink: automated side-chain assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic. J Magn Reson 181(1):45–67

    Article  ADS  Google Scholar 

  • Montelione GT, Moseley HNB (1999) Automated analysis of NMR assignments and structures for proteins. Curr Opin Struct Biol 9:635–642

    Article  Google Scholar 

  • Mumenthaler C, Güntert P, Braun W, Wüthrich K (1997) Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. J Biomol NMR 10(4):351–362

    Article  Google Scholar 

  • Ottiger M, Delaglio F, Bax A (1998) Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 138:373–378

    Article  Google Scholar 

  • Permi P, Rosevear PR, Annila A (2000) A set of HNCO-based experiments for measurement of residual dipolar couplings in 15N, 13C, (2H)-labeled proteins. J Biomol NMR 17:43–54

    Article  Google Scholar 

  • Pons J, Delsuc M (2001) RESCUE: an artificial neural network tool for the NMR spectral assignment of proteins. J Biomol NMR 15:15–16

    Article  Google Scholar 

  • Prestegard JH, Bougault CM, Kishore AI (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev 104:3519–3540

    Article  Google Scholar 

  • Raman S, Lange OF, Rossi P, Tyka M, Wang X, Aramini J, Liu G, Ramelot TA, Eletsky A, Szyperski T, Kennedy MA, Prestegard J, Montelione GT, Baker D (2010) NMR structure determination for larger proteins using backbone-only data. Science 327(5968):1014–1018

    Article  ADS  Google Scholar 

  • Rieping W, Habeck M, Nilges M (2005) Inferential structure determination. Science 309:303–306

    Article  ADS  Google Scholar 

  • Rohl CA, Baker D (2002) De novo determination of protein backbone structure from residual dipolar couplings using rosetta. J Am Chem Soc 124:2723–2729

    Article  Google Scholar 

  • Ruan K, Briggman KB, Tolman JR (2008) De novo determination of internuclear vector orientations from residual dipolar couplings measured in three independent alignment media. J Biomol NMR 41:61–76

    Article  Google Scholar 

  • Russell S, Norvig P (2002) Artificial intelligence: a modern approach. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  ADS  Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu G, Eletsky A, Wu Y, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105(12):4685–4690

    Article  ADS  Google Scholar 

  • Sun X, Druzdzel MJ, Yuan C (2007) Dynamic Weighting A* Search-Based MAP Algorithm for Bayesian Networks. In: Proceedings of the 20th international joint conference on artificial intelligence, pp 2385–2390

  • Tang Y, Schneider WM, Shen Y, Raman S, Inouye M, Baker D, Roth MJ, Montelione GT (2010) Fully automated high-quality nmr structure determination of small (2)h-enriched proteins. J Struct Funct Genomics 11(4):223–232

    Article  Google Scholar 

  • Tian F, Valafar H, Prestegard JH (2001) A dipolar coupling based strategy for simultaneous resonance assignment and structure determination of protein backbones. J Am Chem Soc 123:11791–11796

    Article  Google Scholar 

  • Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  ADS  Google Scholar 

  • Tolman JR, Flanagan JM, Kennedy MA, Prestegard JH (1995) Nuclear magnetic dipole interactions in field-oriented proteins: information for structure determination in solution. Proc Natl Acad Sci USA 92:9279–9283

    Article  ADS  Google Scholar 

  • Tugarinov V, Kanelis V, Kay LE (2006) Isotope labeling strategies for the study of high-molecular-weight proteins by solution NMR spectroscopy. Nat Protoc 1:749–754

    Article  Google Scholar 

  • Ulrich E, Akutsu H, Doreleijers J, Harano Y, Ioannidis Y, Lin J, Livny M, Mading S, Maziuk D, Miller Z, Nakatani E, Schulte C, Tolmie D, Wenger R, Yao H, Markley J (2007) BioMagResBank. Nucleic Acids Res 36:D402–D408

    Article  Google Scholar 

  • Vitek O, Bailey-Kellogg C, Craig B, Vitek J (2006) Inferential backbone assignment for sparse data. J Biomol NMR 35:187–208

    Article  Google Scholar 

  • Wang L, Donald BR (2004) Exact solutions for internuclear vectors and backbone dihedral angles from NH residual dipolar couplings in two media, and their application in a systematic search algorithm for determining protein backbone structure. J Biomol NMR 29(3):223–242

    Article  Google Scholar 

  • Wang L, Mettu R, Donald BR (2006) A polynomial-time algorithm for de novo protein backbone structure determination from NMR data. J Comput Biol 13(7):1276–1288

    Article  MathSciNet  Google Scholar 

  • Wei Z, Li H (2007) A Markov random field model for network-based analysis of genomic data. Bioinformatics 23:1537–1544

    Article  MathSciNet  Google Scholar 

  • Wu K-P, Chang J-M, Chen J-B, Chang C-F, Wu W-J, Huang T-H, Sung T-Y, Hsu W-L (2005) RIBRA-an error-tolerant algorithm for the NMR backbone assignment problem. In: Proceedings of the international conference on research in computational molecular biology (RECOMB’05), pp 229–244

  • Xu Y, Xu D, Uberbacher EC (1998) An efficient computational method for globally optimal threading. J Comput Biol 5(3):597–614

    Article  Google Scholar 

  • Yanover C, Weiss Y (2002) Approximate inference and protein-folding. In: NIPS, pp 1457–1464

  • Zeng J, Boyles J, Tripathy C, Wang L, Yan A, Zhou P, Donald BR (2009) High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations. J Biomol NMR 45(3):265–281

    Article  Google Scholar 

  • Zeng J, Zhou P, Donald BR (2010) A Markov random field framework for protein side-chain resonance assignment. In: Proceedings of the 14th annual international conference on research in computational molecular biology (RECOMB’10) Lisbon, Portugal, vol 6044/2010. Springer-Verlag (Berlin), pp 550–570

  • Zheng D, Huang YJ, Moseley HNB, Xiao R, Aramini J, Swapna GVT, Montelione GT (2003) Automated protein fold determination using a minimal nmr constraint strategy. Prot Sci 12(6):1232–1246

    Article  Google Scholar 

  • Zimmerman D, Kulikowski C, Feng W, Tashiro M, Chien C-Y, Ríos C, Moy F, Powers R, Montelione G (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. C. Bailey-Kellogg, Dr. M.S. Apaydin and Mr. J. Martin for reading our draft and providing us with valuable comments. We thank all members of the Donald and Zhou Labs for helpful discussions and comments. We are grateful to Ms. M. Bomar for helping us with pol η UBZ NMR data. We thank Dr. J. Liu for helping us check the side-chain resonance assignments of FF2. We thank the anonymous reviewers for their helpful comments and suggestions. This work is supported by the following grants from National Institutes of Health: R01 GM-65982 and R01 GM-78031 to B.R.D. and R01 GM-079376 to P.Z

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Randall Donald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, J., Zhou, P. & Donald, B.R. Protein side-chain resonance assignment and NOE assignment using RDC-defined backbones without TOCSY data. J Biomol NMR 50, 371–395 (2011). https://doi.org/10.1007/s10858-011-9522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-011-9522-4

Keywords

Navigation