Skip to main content
Log in

Exclusively NOESY-based automated NMR assignment and structure determination of proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A fully automated method is presented for determining NMR solution structures of proteins using exclusively NOESY spectra as input, obviating the need to measure any spectra only for obtaining resonance assignments but devoid of structural information. Applied to two small proteins, the approach yielded structures that coincided closely with conventionally determined structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson RA, Saudek V (2002) The direct determination of protein structure by NMR without assignment. FEBS Lett 510:1–4

    Article  Google Scholar 

  • Bailey-Kellogg C, Widge A, Kelley JJ, Berardi MJ, Bushweller JH, Donald BR (2000) The NOESY JIGSAW: automated protein secondary structure and main-chain assignment from sparse, unassigned NMR data. J Comput Biol 7:537–558

    Article  Google Scholar 

  • Baran MC, Huang YJ, Moseley HNB, Montelione GT (2004) Automated analysis of protein NMR assignments and structures. Chem Rev 104:3541–3555

    Article  Google Scholar 

  • Bartels C, Billeter M, Güntert P, Wüthrich K (1996) Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. J Biomol NMR 7:207–213

    Article  Google Scholar 

  • Bartels C, Güntert P, Billeter M, Wüthrich K (1997) GARANT–a general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J Comput Chem 18:139–149

    Article  Google Scholar 

  • Billeter M, Braun W, Wüthrich K (1982) Sequential resonance assignments in protein 1H nuclear magnetic resonance spectra: computation of sterically allowed proton proton distances and statistical-analysis of proton proton distances in single-crystal protein conformations. J Mol Biol 155:321–346

    Article  Google Scholar 

  • Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • Dobson CM, Howarth MA, Redfield C (1984) Nuclear Overhauser effects and the assignment of the proton NMR spectra of proteins. FEBS Lett 176:307–312

    Article  Google Scholar 

  • Fiorito F, Herrmann T, Damberger FF, Wüthrich K (2008) Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H, 1H]-NOESY. J Biomol NMR 42:23–33

    Article  Google Scholar 

  • Grishaev A, Llinás M (2002) CLOUDS, a protocol for deriving a molecular proton density via NMR. Proc Natl Acad Sci USA 99:6707–6712

    Article  ADS  Google Scholar 

  • Gronwald W, Kalbitzer HR (2004) Automated structure determination of proteins by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 44:33–96

    Article  Google Scholar 

  • Güntert P (2003) Automated NMR protein structure calculation. Prog Nucl Magn Reson Spectrosc 43:105–125

    Article  Google Scholar 

  • Güntert P (2009) Automated structure determination from NMR spectra. Eur Biophys J 38:129–143

    Article  Google Scholar 

  • Güntert P, Berndt KD, Wüthrich K (1993) The program ASNO for computer-supported collection of NOE upper distance constraints as input for protein structure determination. J Biomol NMR 3:601–606

    Article  Google Scholar 

  • Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298

    Article  Google Scholar 

  • Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227

    Article  Google Scholar 

  • Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    Article  ADS  Google Scholar 

  • Huang YJ, Tejero R, Powers R, Montelione GT (2006) A topology-constrained distance network algorithm for protein structure determination from NOESY data. Proteins 62:587–603

    Article  Google Scholar 

  • Ikeya T, Takeda M, Yoshida H, Terauchi T, Jee J, Kainosho M, Güntert P (2009) Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system. J Biomol NMR 44:261–272

    Article  Google Scholar 

  • Ikeya T, Sasaki A, Sakakibara D, Shigemitsu Y, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Nietlispach D, Wälchli M, Smith BO, Shirakawa M, Güntert P, Ito Y (2010) NMR protein structure determination in living E. coli cells using nonlinear sampling. Nat Protoc 5:1051–1060

    Article  Google Scholar 

  • Jee J, Güntert P (2003) Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment. J Struct Funct Genom 4:179–189

    Article  Google Scholar 

  • Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Meth Mol Biol 278:313–352

    Google Scholar 

  • Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  ADS  Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph 14:51–55

    Article  Google Scholar 

  • Koradi R, Billeter M, Engeli M, Güntert P, Wüthrich K (1998) Automated peak picking and peak integration in macromolecular NMR spectra using AUTOPSY. J Magn Reson 135:288–297

    Article  ADS  Google Scholar 

  • Koradi R, Billeter M, Güntert P (2000) Point-centered domain decomposition for parallel molecular dynamics simulation. Comput Phys Commun 124:139–147

    Article  ADS  MATH  Google Scholar 

  • Kraulis PJ (1994) Protein three-dimensional structure determination and sequence-specific assignment of 13C-separated and 15N-separated NOE data–a novel real-space ab initio approach. J Mol Biol 243:696–718

    Article  Google Scholar 

  • Laskowski RA, Macarthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  Google Scholar 

  • López-Méndez B, Güntert P (2006) Automated protein structure determination from NMR spectra. J Am Chem Soc 128:13112–13122

    Article  Google Scholar 

  • Luan T, Jaravine V, Yee A, Arrowsmith CH, Orekhov VY (2005) Optimization of resolution and sensitivity of 4D NOESY using multi-dimensional decomposition. J Biomol NMR 33:1–14

    Article  Google Scholar 

  • Luginbühl P, Güntert P, Billeter M, Wüthrich K (1996) The new program OPAL for molecular dynamics simulations and energy refinements of biological macromolecules. J Biomol NMR 8:136–146

    Article  Google Scholar 

  • Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with 3-dimensional profiles. Nature 356:83–85

    Article  ADS  Google Scholar 

  • Malliavin TE, Rouh A, Delsuc MA, Lallemand JY (1992) Approche directe de la détermination de structures moléculaires à partir de l’effet Overhauser nucléaire. C R Acad Sci II 315:653–659

    Google Scholar 

  • Malmodin D, Billeter M (2005) High-throughput analysis of protein NMR spectra. Prog Nucl Magn Reson Spectrosc 46:109–129

    Article  Google Scholar 

  • Malmodin D, Papavoine CHM, Billeter M (2003) Fully automated sequence-specific resonance assignments of heteronuclear protein spectra. J Biomol NMR 27:69–79

    Article  Google Scholar 

  • Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Meth Enzymol 339:91–108

    Article  Google Scholar 

  • Mumenthaler C, Güntert P, Braun W, Wüthrich K (1997) Automated combined assignment of NOESY spectra and three-dimensional protein structure determination. J Biomol NMR 10:351–362

    Article  Google Scholar 

  • Nilges M (1995) Calculation of protein structures with ambiguous distance restraints–automated assignment of ambiguous NOE crosspeaks and disulfide connectivities. J Mol Biol 245:645–660

    Article  Google Scholar 

  • Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Prot Chem 66:27–85

    Article  Google Scholar 

  • Pristovšek P, Rüterjans H, Jerala R (2002) Semiautomatic sequence-specific assignment of proteins based on the tertiary structure–the program st2nmr. J Comput Chem 23:335–340

    Article  Google Scholar 

  • Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Wälchli M, Smith BO, Shirakawa M, Güntert P, Ito Y (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–105

    Article  ADS  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in 3-dimensional structures of proteins. Proteins 17:355–362

    Article  Google Scholar 

  • Stratmann D, van Heijenoort C, Guittet E (2009) NOEnet-use of NOE networks for NMR resonance assignment of proteins with known 3D structure. Bioinformatics 25:474–481

    Article  Google Scholar 

  • Takeda M, Ikeya T, Güntert P, Kainosho M (2007) Automated structure determination of proteins with the SAIL-FLYA NMR method. Nat Protoc 2:2896–2902

    Article  Google Scholar 

  • Torizawa T, Shimizu M, Taoka M, Miyano H, Kainosho M (2004) Efficient production of isotopically labeled proteins by cell-free synthesis: a practical protocol. J Biomol NMR 30:311–325

    Article  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol 194:531–544

    Article  Google Scholar 

  • Wallner B, Elofsson A (2003) Can correct protein models be identified? Protein Sci 12:1073–1086

    Article  Google Scholar 

  • Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

We thank Drs. H. Yoshida, T. Terauchi, and A. M. Ono for preparing the SAIL ubiquitin sample. Financial support by a Grant-in-Aid for Scientific Research of the Japan Society for the Promotion of Science, the Targeted Proteins Research Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan, and the Lichtenberg program of the Volkswagen Foundation is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Güntert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeya, T., Jee, JG., Shigemitsu, Y. et al. Exclusively NOESY-based automated NMR assignment and structure determination of proteins. J Biomol NMR 50, 137–146 (2011). https://doi.org/10.1007/s10858-011-9502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-011-9502-8

Keywords

Navigation