Skip to main content
Log in

Characterization of different water pools in solid-state NMR protein samples

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

We observed and characterized two distinct signals originating from different pools of water protons in solid-state NMR protein samples, namely from crystal water which exchanges polarization with the protein (on the NMR timescale) and is located in the protein-rich fraction at the periphery of the magic-angle spinning (MAS) sample container, and supernatant water located close to the axis of the sample container. The polarization transfer between the water and the protein can be probed by two-dimensional exchange spectroscopy, and we show that the supernatant water does not interact with protein on the timescale of the experiments. The two water pools have different spectroscopic properties, including resonance frequency, longitudinal, transverse and rotating frame relaxation times. The supernatant water can be removed almost completely physically or can be frozen selectively. Both measures lead to an enhancement of the quality factor of the probe circuit, accompanied by an improvement of the experimental signal/noise, and greatly simplify solvent-suppression by substantially reducing the water signal. We also present a tool, which allows filling solid-state NMR sample containers in a more efficient manner, greatly reducing the amount of supernatant water and maximizing signal/noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ader C, Schneider R, Seidel K, Etzkorn M, Becker S, Baldus M (2009) Structural rearrangements of membrane proteins probed by water-edited solid-state NMR spectroscopy. J Am Chem Soc 131:170–176

    Article  Google Scholar 

  • Aime S, Bruno E, Cabella C, Colombatto S, Digilio G, Mainero V (2005) HR-MAS of cells: a “Cellular Water Shift” due to water-protein interactions? Magn Res Med 54:1547–1552

    Article  Google Scholar 

  • Andronesi O, von Bergen M, Biernat J, Seidel K, Griesinger C, Mandelkow E, Baldus M (2008) Characterization of Alzheimer’s-like paired helical filaments from the core domain of tau protein using solid-state NMR spectroscopy. J Am Chem Soc 130:5922–5928

    Article  Google Scholar 

  • Baldus M (2006) Solid-state NMR spectroscopy: molecular structure and organization at the atomic level. Angew Chem Int Ed Engl 45:1186–1188

    Article  Google Scholar 

  • Böckmann A (2007) High-resolution solid-state MAS NMR of proteins—Crh as an example. Magn Reson Chem 45:S24–S31

    Article  Google Scholar 

  • Böckmann A, Lange A, Galinier A, Luca S, Giraud N, Juy M, Heise H, Montserret R, Penin F, Baldus M (2003) Solid-state NMR sequential resonance assignments and conformational analysis of the 2 × 10.4 kDa dimeric form of the Bacillus subtilis protein Crh. J Biomol NMR 27(32):3–339

    Google Scholar 

  • Böckmann A, Juy M, Bettler E, Emsley L, Galinier A, Penin F, Lesage A (2005) Water-protein hydrogen exchange in the micro-crystalline protein Crh as observed by solid state NMR spectroscopy. J Biomol NMR 32:195–207

    Article  Google Scholar 

  • Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  ADS  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG III, Skelton NJ (1996) Protein NMR spectroscopy: principles and practice. Elsevier Science, USA

    Google Scholar 

  • Chevelkov V, Faelber K, Diehl A, Heinemann U, Oschkinat H, Reif B (2005) Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of alpha-spectrin by MAS solid-state NMR. J Biomol NMR 31:295–310

    Article  Google Scholar 

  • Chevelkov V, Faelber K, Schrey A, Rehbein K, Diehl A, Reif B (2007) Differential line broadening in MAS solid-state NMR due to dynamic interference. J Am Chem Soc 129:10195–10200

    Article  Google Scholar 

  • Chevelkov V, Diehl A, Reif B (2008) Measurement of 15 N–T1 relaxation rates in a perdeuterated protein by magic angle spinning solid-state nuclear magnetic resonance spectroscopy. J Chem Phys 128:052316

    Article  ADS  Google Scholar 

  • Etzkorn M, Martell S, Andronesi O, Seidel K, Engelhard M, Baldus M (2007) Secondary structure, dynamics, and topology of a seven-helix receptor in native membranes, studied by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 46:459–462

    Article  Google Scholar 

  • Galinier A, Haiech J, Kilhoffer MC, Jaquinod M, Stulke J, Deutscher J, Martin-Verstraete I (1997) The Bacillus subtilis crh gene encodes a Hpr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci USA 94:8439–8444

    Article  ADS  Google Scholar 

  • Giraud N, Blackledge M, Goldman M, Böckmann A, Lesage A, Penin F, Emsley L (2005) Quantitative analysis of backbone dynamics in a crystalline protein from Nitrogen-15 spin-lattice relaxation. J Am Chem Soc 127:18190–18201

    Article  Google Scholar 

  • Gottlieb HE, Kotlyar V, Nudelman A (1997) NMR chemical shifts of common laboratory solvents as trace impurities. J Org Chem 62:7512–7515

    Article  Google Scholar 

  • Grzesiek S, Bax A (1993) The importance of not saturating H2O in protein NMR: application to sensitivity enhancement and NOE measurements. J Am Chem Soc 115:12593–12594

    Article  Google Scholar 

  • Halle B (2003) Cross-relaxation between macromolecular and solvent spins: the role of long-range dipole couplings. J Chem Phys 119:12372–12385

    Article  ADS  Google Scholar 

  • Harbison GS, Roberts JE, Herzfeld J, Griffin RG (1988) Solid-state NMR detection of proton exchange between the bacteriorhodopsin Schiff base and bulk water. J Am Chem Soc 110:7221–7223

    Article  Google Scholar 

  • Hiller S, Wider G, Etezady-Esfarjani T, Horst R, Wüthrich K (2005) Managing the solvent water polarization to obtain improved NMR spectra of large molecular structures. J Biomol NMR 32:61–70

    Article  Google Scholar 

  • Hologne M, Faelber K, Diehl A, Reif B (2005) Characterization of dynamics of perdeuterated proteins by MAS solid-state NMR. J Am Chem Soc 127:11208–11209

    Article  Google Scholar 

  • Iwata K, Fujiwara T, Matsuki Y, Akutsu H, Takahashi S, Naiki H, Goto Y (2006) 3D structure of amyloid protofilaments of beta2-microglobulin fragment probed by solid-state NMR. Proc Natl Acad Sci U S A 103:18119–18124

    Article  ADS  Google Scholar 

  • Jaroniec CP, MacPhee CE, Bajaj VS, McMahon MT, Dobson CM, Griffin RG (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 101:711–716

    Article  ADS  Google Scholar 

  • Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by two-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553

    Article  ADS  Google Scholar 

  • Juy M, Penin F, Favier A, Galinier A, Montserret R, Haser R, Deutscher J, Böckmann A (2003) Dimerization of Crh by reversible 3D domain swapping induces structural adjustments to its monomeric homologue HPr. J Mol Biol 332:767–776

    Article  Google Scholar 

  • Kumashiro KK, Schmidt-Rohr K, Thompson LK (1998) A novel tool for probing membrane protein structure: solid-state NMR with proton spin diffusion and X-nucleus detection. J Am Chem Soc 120:5043

    Article  Google Scholar 

  • Lange A, Becker S, Seidel K, Giller K, Pongs O, Baldus M (2005) A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew Chem Int Ed Engl 44:2–5

    Google Scholar 

  • Lesage A, Böckmann A (2003) Water–protein interactions in microcrystalline Crh measured by 1H–13C solid-state NMR spectroscopy. J Am Chem Soc 125:13336–13337

    Article  Google Scholar 

  • Lesage A, Emsley L, Penin F, Böckmann A (2006) Investigation of dipolar-mediated water-protein interactions in microcrystalline Crh by solid-state NMR spectroscopy. J Am Chem Soc 128:8246–8255

    Article  Google Scholar 

  • Lesage A, Gardiennet C, Loquet A, Verel R, Pintacuda G, Emsley L, Meier BH, Böckmann A (2008) Polarization transfer over the water–protein interface in solid proteins. Angew Chem Int Ed Engl 47:5851–5854

    Article  Google Scholar 

  • Loquet A, Bardiaux B, Gardiennet C, Blanchet C, Baldus M, Nilges M, Malliavin T, Bockmann A (2008) 3D structure determination of the Crh protein from highly ambiguous solid-state NMR restraints. J Am Chem Soc 130:3579–3589

    Article  Google Scholar 

  • Lorieau JL, McDermott AE (2006) Conformational flexibility of a microcrystalline globular protein: order parameters by solid-state NMR spectroscopy. J Am Chem Soc 128:11505–11512

    Article  Google Scholar 

  • Lorieau JL, Day LA, McDermott AE (2008) Conformational dynamics of an intact virus: order parameters for the coat protein of Pf1 bacteriophage. Proc Natl Acad Sci U S A 105:10366–10371

    Article  ADS  Google Scholar 

  • Mallamace F, Corsaro C, Broccio M, Branca C, Gonzalez-Segredo N, Spooren J, Chen SH, Stanley HE (2008) NMR evidence of a sharp change in a measure of local order in deeply supercooled confined water. Proc Natl Acad Sci U S A 105:12725–12729

    Article  ADS  Google Scholar 

  • Manolikas T, Herrmann T, Meier BH (2008) Protein structure determination from 13C spin-diffusion solid-state NMR. J Am Chem Soc 130:3959–3966

    Article  Google Scholar 

  • McDermott AE (2004) Structural and dynamic studies of proteins by solid-state NMR spectroscopy: rapid movement forward. Curr Opin Struct Biol 14:554–561

    Article  Google Scholar 

  • Meier BH, Ernst RR (1979) Elucidation of chemical exchange networks by two-dimensional NMR spectroscopy: the heptamethylbenzenonium ion. J Am Chem Soc 101:6441–6442

    Article  Google Scholar 

  • Modig K, Liepinsh E, Otting G, Halle B (2004) Dynamics of protein and peptide hydration. J Am Chem Soc 126:102–114

    Article  Google Scholar 

  • Otting G (1997) NMR studies of water bound to biological molecules. Prog NMR Spectrosc 31:259–285

    Article  Google Scholar 

  • Paulson EK, Morcombe CR, Gaponenko V, Dancheck B, Byrd RA, Zilm KW (2003) High-sensitivity observation of dipolar exchange and NOEs between exchangeable protons in proteins by 3D solid-state NMR spectroscopy. J Am Chem Soc 125:14222–14223

    Article  Google Scholar 

  • Ravindranathan KP, Gallicchio E, McDermott AE, Levy RM (2007) Conformational dynamics of substrate in the active site of cytochrome P450 BM-3/NPG complex: insights from NMR order parameters. J Am Chem Soc 129:474–475

    Article  Google Scholar 

  • Schneider R, Ader C, Lange A, Giller K, Hornig S, Pongs O, Becker S, Baldus M (2008) Solid-state NMR spectroscopy applied to a chimeric potassium channel in lipid bilayers. J Am Chem Soc 130:7427–7435

    Article  Google Scholar 

  • Segawa T, Kateb F, Duma L, Bodenhausen G, Pelupessy P (2008) Exchange Rate constants of invisible protons in proteins determined by NMR spectroscopy. Chembiochem 9:537–542

    Article  Google Scholar 

  • Skalicky JJ, Sukumaran DK, Mills JL, Szyperski T (2000) Toward structural biology in supercooled water. J Am Chem Soc 122:3230–3231

    Article  Google Scholar 

  • Skalicky JJ, Mills JL, Sharma S, Szyperski T (2001) Aromatic ring-flipping in supercooled water: implications for NMR-based structural biology of proteins. J Am Chem Soc 123:388–397

    Article  Google Scholar 

  • Sklenár V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for 1H–15 N HSQC experiments optimized to retain full sensitivity. J Magn Reson A 102:241–245

    Article  Google Scholar 

  • Tycko R (2004) Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14:96–103

    Article  Google Scholar 

  • Wasmer C, Lange A, Melckebeke HV, Siemer AB, Riek R, Meier BH (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523

    Article  ADS  Google Scholar 

  • Zhou DH, Rienstra CM (2008) High-performance solvent suppression for proton detected solid-state NMR. J Magn Reson 192:167–172

    Article  ADS  Google Scholar 

  • Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM (2007a) Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 129:11791–11801

    Article  Google Scholar 

  • Zhou DH, Shea JJ, Nieuwkoop AJ, Franks WT, Wylie BJ, Mullen C, Sandoz D, Rienstra CM (2007b) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed Engl 46:8380–8383

    Article  Google Scholar 

Download references

Acknowledgement

We thank Michel Juy for the picture of the Crh proteins arranged in the unit cell. This work was funded in part by CNRS, the French Research Ministry (ANR JCJC JC05_44957, ANR PCV 07 PROTEIN MOTION), the Swiss National Science Foundation (SNF) and the ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anja Böckmann or Anne Lesage.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böckmann, A., Gardiennet, C., Verel, R. et al. Characterization of different water pools in solid-state NMR protein samples. J Biomol NMR 45, 319–327 (2009). https://doi.org/10.1007/s10858-009-9374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-009-9374-3

Keywords

Navigation