Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins

Abstract

In the last 15 years substantial advances have been made to place isotope labels in native and glycosylated proteins for NMR studies and structure determination. Key developments include segmental isotope labeling using Native Chemical Ligation, Expressed Protein Ligation and Protein Trans-Splicing. These advances are pushing the size limit of NMR spectroscopy further making larger proteins accessible for this technique. It is just emerging that segmental isotope labeling can be used to define inter-domain interactions in NMR structure determination. Labeling of post-translational modified proteins like glycoproteins remains difficult but some promising developments were recently achieved. Key achievements are segmental and site-specific labeling schemes that improve resonance assignment and structure determination of the glycan moiety. We adjusted the focus of this perspective article to concentrate on the NMR applications based on recent developments rather than on labeling methods themselves to illustrate the considerable potential for biomolecular NMR.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

NCL:

Native Chemical Ligation

EPL:

Expressed Protein Ligation

PTS:

Protein Trans-Splicing

aa:

Amino acid

SPPS:

Solid Phase Peptide Synthesis

IPL:

Intein-mediated Protein Ligation

References

  1. Anderson LL, Marshall GR, Crocker E, Smith SO, Baranski TJ (2005) Motion of carboxyl terminus of Galpha is restricted upon G protein activation. A solution NMR study using semisynthetic Galpha subunits. J Biol Chem 280:31019–31026

    Google Scholar 

  2. Apweiler R, Hermjakob H, Sharon N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim Biophys Acta 1473:4–8

    Google Scholar 

  3. Arya R, Bhattacharya A, Saini KS (2008) Dictyostelium discoideum—a promising expression system for the production of eukaryotic proteins. FASEB J 22:4055–4066

    Google Scholar 

  4. Ayers B, Blaschke UK, Camarero JA, Cotton GJ, Holford M, Muir TW (1999) Introduction of unnatural amino acids into proteins using expressed protein ligation. Biopolymers 51:343–354

    Google Scholar 

  5. Azurmendi HF, Vionnet J, Wrightson L, Trinh LB, Shiloach J, Freedberg DI (2007) Extracellular structure of polysialic acid explored by on cell solution NMR. Proc Natl Acad Sci USA 104:11557–11561

    ADS  Google Scholar 

  6. Balambika R, Inui T, Sargsyan H, Arshava B, Cohen L, Ding F, Becker J, Naider F (2007) Synthesis of a double transmembrane domain fragment of Ste2p by native chemical ligation. Int J Peptide Res & Ther 13:251–263

    Google Scholar 

  7. Blanchard V, Gadkari RA, George AV, Roy S, Gerwig GJ, Leeflang BR, Dighe RR, Boelens R, Kamerling JP (2008) High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains–selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG. Glycoconj J 25:245–257

    Google Scholar 

  8. Blaschke UK, Cotton GJ, Muir TW (2000) Synthesis of multi-domain proteins using expressed protein ligation: strategies for segmental isotopic labeling of internal regions. Tetrahedron 56:9461

    Google Scholar 

  9. Blundell CD, DeAngelis PL, Day AJ, Almond A (2004) Use of 15N-NMR to resolve molecular details in isotopically-enriched carbohydrates: sequence-specific observations in hyaluronan oligomers up to decasaccharides. Glycobiology 14:999–1009

    Google Scholar 

  10. Brik A, Ficht S, Wong CH (2006) Strategies for the preparation of homogenous glycoproteins. Curr Opin Chem Biol 10:638–644

    Google Scholar 

  11. Busche AEL, Aranko AS, Talebzadeh-Farooji M, Bernhard F, Dötsch V, Iwaï H (2009) Segmental isotopic labeling of a central domain in a multidomain protein by protein trans-splicing using only one robust DnaE intein. Angew Chem Int Ed 48:6128–6131

    Google Scholar 

  12. Camarero JA, Fushman D, Cowburn D, Muir TW (2001) Peptide chemical ligation inside living cells: in vivo generation of a circular protein domain. Bioorg Med Chem 9:2479–2484

    Google Scholar 

  13. Camarero JA, Shekhtman A, Campbell EA, Chlenov M, Gruber TM, Bryant DA, Darst SA, Cowburn D, Muir TW (2002) Autoregulation of a bacterial sigma factor explored by using segmental isotopic labeling and NMR. Proc Natl Acad Sci USA 99:8536–8541

    ADS  Google Scholar 

  14. Chen MM, Glover KJ, Imperiali B (2007) From peptide to protein: comparative analysis of the substrate specificity of N-linked glycosylation in C. jejuni. Biochemistry 46:5579–5585

    Google Scholar 

  15. Colebrooke SA, Blundell CD, DeAngelis PL, Campbell ID, Almond A (2005) Exploiting the carboxylate chemical shift to resolve degenerate resonances in spectra of 13C-labelled glycosaminoglycans. Magn Reson Chem 43:805–815

    Google Scholar 

  16. Conte MR, Grune T, Ghuman J, Kelly G, Ladas A, Matthews S, Curry S (2000) Structure of tandem RNA recognition motifs from polypyrimidine tract binding protein reveals novel features of the RRM fold. EMBO J 19:3132–3141

    Google Scholar 

  17. Cotton GJ, Muir TW (2000) Generation of a dual-labeled fluorescence biosensor for Crk-II phosphorylation using solid-phase expressed protein ligation. Chem Biol 7:253

    Google Scholar 

  18. Cotton GJ, Ayers B, Xu R, Muir TW (1999) Insertion of a synthetic peptide into a recombinant protein framework: a protein biosensor. J Am Chem Soc 121:1100–1101

    Google Scholar 

  19. Cubeddu L, Moss CX, Swarbrick JD, Gooley AA, Williams KL, Curmi PM, Slade MB, Mabbutt BC (2000) Dictyostelium discoideum as expression host: isotopic labeling of a recombinant glycoprotein for NMR studies. Protein Expr Purif 19:335–342

    Google Scholar 

  20. David R, Richter MP, Beck-Sickinger AG (2004) Expressed protein ligation. Method and applications. Eur J Biochem 271:663–677

    Google Scholar 

  21. Dawson PE, Kent SBH (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960

    Google Scholar 

  22. Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779

    ADS  Google Scholar 

  23. De Beer T, Van Zuylen CW, Leeflang BR, Hard K, Boelens R, Kaptein R, Kamerling JP, Vliegenthart JF (1996) NMR studies of the free alpha subunit of human chorionic gonadotropin. Structural influences of N-glycosylation and the beta subunit on the conformation of the alpha subunit. Eur J Biochem 241:229–242

    Google Scholar 

  24. Derbyshire V, Wood DW, Wu W, Dansereau JT, Dalgaard JZ, Belfort M (1997) Genetic definition of a protein-splicing domain: functional mini-inteins support structure predictions and a model for intein evolution. Proc Natl Acad Sci USA 94:11466–11471

    ADS  Google Scholar 

  25. Dumon C, Bosso C, Utille JP, Heyraud A, Samain E (2006) Production of Lewis x tetrasaccharides by metabolically engineered Escherichia coli. Chembiochem 7:359–365

    Google Scholar 

  26. Erbel PJ, Karimi-Nejad Y, van Kuik JA, Boelens R, Kamerling JP, Vliegenthart JF (2000) Effects of the N-linked glycans on the 3D structure of the free alpha-subunit of human chorionic gonadotropin. Biochemistry 39:6012–6021

    Google Scholar 

  27. Evans TC, Xu MQ (2002) Mechanistic and kinetic considerations of protein splicing. Chem Rev 102:4869–4884

    Google Scholar 

  28. Evans TC Jr, Benner J, Xu MQ (1998) Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci 7:2256–2264

    Google Scholar 

  29. Fierfort N, Samain E (2008) Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides. J Biotechnol 134:261–265

    Google Scholar 

  30. Fletcher CM, Harrison RA, Lachmann PJ, Neuhaus D (1994) Structure of a soluble, glycosylated form of the human complement regulatory protein CD59. Structure 2:185–199

    Google Scholar 

  31. Gamblin DP, Scanlan EM, Davis BG (2009) Glycoprotein synthesis: an update. Chem Rev 109:131–163

    Google Scholar 

  32. Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Google Scholar 

  33. Gawlitzek M, Papac DI, Sliwkowski MB, Ryll T (1999) Incorporation of 15N from ammonium into the N-linked oligosaccharides of an immunoadhesin glycoprotein expressed in Chinese hamster ovary cells. Glycobiology 9:125–131

    Google Scholar 

  34. Gilhespy-Muskett AM, Partridge J, Jefferis R, Homans SW (1994) A novel 13C isotopic labelling strategy for probing the structure and dynamics of glycan chains in situ on glycoproteins. Glycobiology 4:485–489

    Google Scholar 

  35. Gitti R, Long G, Bush CA (1994) Measurement of long-range2 13C–1H coupling constants of 95% uniformly 13C-labeled polysaccharide from Streptococcus mitis J22. Biopolymers 34:1327–1338

    Google Scholar 

  36. Goux WJ, Perry C, James TL (1982) An NMR study of 13C-enriched galactose attached to the single carbohydrate chain of hen ovalbumin. Motions of the carbohydrates of glycoproteins. J Biol Chem 257:1829–1835

    Google Scholar 

  37. Gross JD, Gelev VM, Wagner G (2003a) A sensitive and robust method for obtaining intermolecular NOEs between side chains in large protein complexes. J Biomol NMR 25:235–242

    Google Scholar 

  38. Gross JD, Moerke NJ, Von der Haar T, Lugovskoy AA, Sachs AB, McCarthy JE, Wagner G (2003b) Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115:739–750

    Google Scholar 

  39. Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci USA 96:10068–10073

    ADS  Google Scholar 

  40. Hancock SM, Vaughan MD, Withers SG (2006) Engineering of glycosidases and glycosyltransferases. Curr Opin Chem Biol 10:509–519

    Google Scholar 

  41. Harris R, Kiddle GR, Field RA, Milton MJ, Ernst B, Magnani JL, Homans SW (1999) Stable-isotope-assisted NMR studies on C-13-enriched sialyl Lewis(x) in solution and bound to E-selectin. J Am Chem Soc 121:2546–2551

    Google Scholar 

  42. Hashimoto Y, Toma K, Nishikido J, Yamamoto K, Haneda K, Inazu T, Valentine KG, Opella SJ (1999) Effects of glycosylation on the structure and dynamics of eel calcitonin in micelles and lipid bilayers determined by nuclear magnetic resonance spectroscopy. Biochemistry 38:8377–8384

    Google Scholar 

  43. Hofmann RM, Muir TW (2002) Recent advances in the application of expressed protein ligation to protein engineering. Curr Opin Biotechnol 13:297

    Google Scholar 

  44. Ichikawa Y, Lin YC, Dumas DP, Shen GJ, Garciajunceda E, Williams MA, Bayer R, Ketcham C, Walker LE, Paulson JC, Wong CH (1992) Chemical-enzymatic synthesis and conformational-analysis of Sialyl Lewis-X and derivatives. J Am Chem Soc 114:9283–9298

    Google Scholar 

  45. Ippel JH, Pouvreau L, Kroef T, Gruppen H, Versteeg G, van den Putten P, Struik PC, van Mierlo CP (2004) In vivo uniform (15)N-isotope labelling of plants: using the greenhouse for structural proteomics. Proteomics 4:226–234

    Google Scholar 

  46. Iwai H, Pluckthun A (1999) Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett 459:166–172

    Google Scholar 

  47. Jackson DY, Burnier J, Quan C, Stanley M, Tom J, Wells JA (1994) A designed peptide ligase for total synthesis of ribonuclease A with unnatural catalytic residues. Science 266:243–247

    ADS  Google Scholar 

  48. Kato K, Yamaguchi Y (2008) Structural analyses of glycoconjugates by NMR. In: Taniguchi N et al (eds) Experimental glycoscience: glycochemistry. Springer, Tokyo, pp 45–50

    Google Scholar 

  49. Kato K, Matsunaga C, Igarashi T, Kim H, Odaka A, Shimada I, Arata Y (1991a) Complete assignment of the methionyl carbonyl carbon resonances in switch variant anti-dansyl antibodies labeled with [1–13C]methionine. Biochemistry 30:270–278

    Google Scholar 

  50. Kato K, Matsunaga C, Odaka A, Yamato S, Takaha W, Shimada I, Arata Y (1991b) Carbon-13 NMR study of switch variant anti-dansyl antibodies: antigen binding and domain-domain interactions. Biochemistry 30:6604–6610

    Google Scholar 

  51. Kato K, Gouda H, Takaha W, Yoshino A, Matsunaga C, Arata Y (1993) 13C NMR study of the mode of interaction in solution of the B fragment of staphylococcal protein A and the Fc fragments of mouse immunoglobulin G. FEBS Lett 328:49–54

    Google Scholar 

  52. Kato K, Sasakawa H, Kamiya Y, Utsumi M, Nakano M, Takahashi N, Yamaguchi Y (2008) 920 MHz ultra-high field NMR approaches to structural glycobiology. Biochim Biophys Acta 1780:619–625

    Google Scholar 

  53. Kern T, Hediger S, Muller P, Giustini C, Joris B, Bougault C, Vollmer W, Simorre JP (2008) Toward the characterization of peptidoglycan structure and protein-peptidoglycan interactions by solid-state NMR spectroscopy. J Am Chem Soc 130:5618–5619

    Google Scholar 

  54. Kim H, Matsunaga C, Yoshino A, Kato K, Arata Y (1994) Dynamical structure of the hinge region of immunoglobulin G as studied by 13C nuclear magnetic resonance spectroscopy. J Mol Biol 236:300–309

    Google Scholar 

  55. Kobashigawa Y, Kumeta H, Ogura K, Inagaki F (2009) Attachment of an NMR-invisible solubility enhancement tag using a sortase-mediated protein ligation method. J Biomol NMR 43:145–150

    Google Scholar 

  56. Kochendoerfer GG, Jones DH, Lee S, Oblatt-Montal M, Opella SJ, Montal M (2004) Functional characterization and NMR spectroscopy on full-length Vpu from HIV-1 prepared by total chemical synthesis. J Am Chem Soc 126:2439–2446

    Google Scholar 

  57. Kowarik M, Numao S, Feldman MF, Schulz BL, Callewaert N, Kiermaier E, Catrein I, Aebi M (2006a) N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314:1148–1150

    ADS  Google Scholar 

  58. Kowarik M, Young NM, Numao S, Schulz BL, Hug I, Callewaert N, Mills DC, Watson DC, Hernandez M, Kelly JF, Wacker M, Aebi M (2006b) Definition of the bacterial N-glycosylation site consensus sequence. EMBO J 25:1957–1966

    Google Scholar 

  59. Lee W, Revington MJ, Arrowsmith C, Kay LE (1994) A pulsed field gradient isotope-filtered 3D 13C HMQC-NOESY experiment for extracting intermolecular NOE contacts in molecular complexes. FEBS Lett 350:87–90

    Google Scholar 

  60. Live D, Silks LA 3rd, Schmidt J (2001) 13C isotopic enrichment for nuclear magnetic resonance studies of carbohydrates and glycoconjugates. Methods Enzymol 338:305–319

    Google Scholar 

  61. Lustbader JW, Birken S, Pollak S, Pound A, Chait BT, Mirza UA, Ramnarain S, Canfield RE, Brown JM (1996) Expression of human chorionic gonadotropin uniformly labeled with NMR isotopes in Chinese hamster ovary cells: an advance toward rapid determination of glycoprotein structures. J Biomol NMR 7:295–304

    Google Scholar 

  62. Macnaughtan MA, Tian F, Liu S, Meng L, Park S, Azadi P, Moremen KW, Prestegard JH (2008) 13C-sialic acid labeling of glycans on glycoproteins using ST6Gal-I. J Am Chem Soc 130:11864–11865

    Google Scholar 

  63. Mal TK, Takahata S, Ki S, Zheng L, Kokubo T, Ikura M (2007) Functional silencing of TATA-binding protein (TBP) by a covalent linkage of the N-terminal domain of TBP-associated factor 1. J Biol Chem 282:22228–22238

    Google Scholar 

  64. Mathys S, EvansJr TC, Chute IC, Wu H, Chong S, Benner J, Liu X-Q, Xu M-Q (1999) Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene 231:1

    Google Scholar 

  65. Metzler WJ, Bajorath J, Fenderson W, Shaw SY, Constantine KL, Naemura J, Leytze G, Peach RJ, Lavoie TB, Mueller L, Linsley PS (1997) Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nat Struct Biol 4:527–531

    Google Scholar 

  66. Mills KV, Lew BM, Jiang S, Paulus H (1998) Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci USA 95:3543–3548

    ADS  Google Scholar 

  67. Miyazaki T, Sato H, Sakakibara T, Kajihara Y (2000) An approach to the precise chemoenzymatic synthesis of C-13-labeled sialyloligosaccharide on an intact glycoprotein: a novel one-pot [3-C-13]-labeling method for sialic acid analogues by control of the reversible aldolase reaction, enzymatic synthesis of [3-C-13]-NeuAc-alpha-(2 → 3)-[U-C-13]-Gal-beta-(1 → 4)-GlcNAc-beta- sequence onto glycoprotein, and its conformational analysis by developed NMR techniques. J Am Chem Soc 122:5678–5694

    Google Scholar 

  68. Muir TW (2003) Semisynthesis of proteins by expressed protein ligation. Annu Rev Biochem 72:249–289

    Google Scholar 

  69. Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci USA 95:6705–6710

    ADS  Google Scholar 

  70. Muona M, Aranko AS, Iwai H (2008) Segmental isotopic labelling of a multidomain protein by protein ligation by protein trans-splicing. Chembiochem 9:2958–2961

    Google Scholar 

  71. Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3:429–438

    Google Scholar 

  72. Oberstrass FC, Auweter SD, Erat M, Hargous Y, Henning A, Wenter P, Reymond L, Amir-Ahmady B, Pitsch S, Black DL, Allain FH (2005) Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309:2054–2057

    ADS  Google Scholar 

  73. Otomo T, Ito N, Kyogoku Y, Yamazaki T (1999) NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry 38:16040–16044

    Google Scholar 

  74. Paulus H (2000) Protein splicing and related forms of protein autoprocessing. Annu Rev Biochem 69:447–496

    Google Scholar 

  75. Pervushin K, Riek R, Wider G, Wuthrich K (1997) Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371

    ADS  Google Scholar 

  76. Pervushin K, Riek R, Wider G, Wuthrich K (1998) Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in C-13-labeled proteins. J Am Chem Soc 120:6394–6400

    Google Scholar 

  77. Peterson RD, Theimer CA, Wu H, Feigon J (2004) New applications of 2D filtered/edited NOESY for assignment and structure elucidation of RNA and RNA-protein complexes. J Biomol NMR 28:59–67

    Google Scholar 

  78. Pickford AR, O’Leary JM (2004) Isotopic labeling of recombinant proteins from the methylotrophic yeast Pichia pastoris. Methods Mol Biol 278:17–33

    Google Scholar 

  79. Piontek C, Ring P, Harjes O, Heinlein C, Mezzato S, Lombana N, Pohner C, Puttner M, Varon Silva D, Martin A, Schmid FX, Unverzagt C (2009) Semisynthesis of a homogeneous glycoprotein enzyme: ribonuclease C: part 1. Angew Chem Int Ed Engl 48:1936–1940

    Google Scholar 

  80. Probert MA, Milton MJ, Harris R, Schenkman S, Brown JM, Homans SW, Field RA (1997) Chemoenzymatic synthesis of GM(3), Lewis x and sialyl Lewis x oligosaccharides in C-13-enriched form. Tetrahedron Lett 38:5861–5864

    Google Scholar 

  81. Rajagopal S, Kent SB (2007) Total chemical synthesis and biophysical characterization of the minimal isoform of the KChIP2 potassium channel regulatory subunit. Protein Sci 16:2056–2064

    Google Scholar 

  82. Severinov K, Muir TW (1998) Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem 273:16205–16209

    Google Scholar 

  83. Shi J, Muir TW (2005) Development of a tandem protein trans-splicing system based on native and engineered split inteins. J Am Chem Soc 127:6198–6206

    Google Scholar 

  84. Shingledecker K, Jiang SQ, Paulus H (1998) Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene 207:187–195

    Google Scholar 

  85. Skrisovska L, Allain FH (2008) Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L. J Mol Biol 375:151–164

    Google Scholar 

  86. Slynko V, Schubert M, Numao S, Kowarik M, Aebi M, Allain FH (2009) NMR structure determination of a segmentally labeled glycoprotein using in vitro glycosylation. J Am Chem Soc 131:1274–1281

    Google Scholar 

  87. Southworth MW, Adam E, Panne D, Byer R, Kautz R, Perler FB (1998) Control of protein splicing by intein fragment reassembly. EMBO J 17:918–926

    Google Scholar 

  88. Telenti A, Southworth M, Alcaide F, Daugelat S, Jacobs WR Jr, Perler FB (1997) The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol 179:6378–6382

    Google Scholar 

  89. Tolbert TJ, Wong C-H (2002) New methods for proteomic research: preparation of proteins with N-terminal cysteines for labeling and conjugation13. Angew Chem Int Ed 41:2171–2174

    Google Scholar 

  90. Tolbert TJ, Franke D, Wong CH (2005) A new strategy for glycoprotein synthesis: ligation of synthetic glycopeptides with truncated proteins expressed in E. coli as TEV protease cleavable fusion protein. Bioorg Med Chem 13:909–915

    Google Scholar 

  91. Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428

    Google Scholar 

  92. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130

    Google Scholar 

  93. Vitali F, Henning A, Oberstrass FC, Hargous Y, Auweter SD, Erat M, Allain FH (2006) Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO J 25:150–162

    Google Scholar 

  94. Volkman BF, Prehoda KE, Scott JA, Peterson FC, Lim WA (2002) Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich syndrome. Cell 111:565–576

    Google Scholar 

  95. Wacker M, Linton D, Hitchen PG, Nita-Lazar M, Haslam SM, North SJ, Panico M, Morris HR, Dell A, Wren BW, Aebi M (2002) N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298:1790–1793

    ADS  Google Scholar 

  96. Walters KJ, Matsuo H, Wagner G (1997) A simple method to distinguish intermonomer nuclear overhauser effects in homodimeric proteins with C2 symmetry. J Am Chem Soc 119:5958–5959

    Google Scholar 

  97. Walters KJ, Ferentz AE, Hare BJ, Hidalgo P, Jasanoff A, Matsuo H, Wagner G (2001) Characterizing protein-protein complexes and oligomers by nuclear magnetic resonance spectroscopy. Methods Enzymol 339:238–258

    Google Scholar 

  98. Walters KJ, Lech PJ, Goh AM, Wang Q, Howley PM (2003) DNA-repair protein hHR23a alters its protein structure upon binding proteasomal subunit S5a. Proc Natl Acad Sci USA 100:12694–12699

    ADS  Google Scholar 

  99. Walton WJ, Kasprzak AJ, Hare JT, Logan TM (2006) An economic approach to isotopic enrichment of glycoproteins expressed from Sf9 insect cells. J Biomol NMR 36:225–233

    Google Scholar 

  100. Weller CT, Lustbader J, Seshadri K, Brown JM, Chadwick CA, Kolthoff CE, Ramnarain S, Pollak S, Canfield R, Homans SW (1996) Structural and conformational analysis of glycan moieties in situ on isotopically 13C, 15N-enriched recombinant human chorionic gonadotropin. Biochemistry 35:8815–8823

    Google Scholar 

  101. Wood MJ, Komives EA (1999) Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation. J Biomol NMR 13:149–159

    Google Scholar 

  102. Wood MJ, Sampoli Benitez BA, Komives EA (2000) Solution structure of the smallest cofactor-active fragment of thrombomodulin. Nat Struct Biol 7:200–204

    Google Scholar 

  103. Wormald MR, Petrescu AJ, Pao YL, Glithero A, Elliott T, Dwek RA (2002) Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography, and molecular modelling. Chem Rev 102:371–386

    Google Scholar 

  104. Wu H, Hu Z, Liu XQ (1998) Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 95:9226–9231

    ADS  Google Scholar 

  105. Wyss DF, Withka JM, Knoppers MH, Sterne KA, Recny MA, Wagner G (1993) 1H resonance assignments and secondary structure of the 13.6 kDa glycosylated adhesion domain of human CD2. Biochemistry 32:10995–11006

    Google Scholar 

  106. Wyss DF, Choi JS, Li J, Knoppers MH, Willis KJ, Arulanandam AR, Smolyar A, Reinherz EL, Wagner G (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269:1273–1278

    ADS  Google Scholar 

  107. Xu MQ, Evans TC Jr (2001) Intein-mediated ligation and cyclization of expressed proteins. Methods 24:257–277

    Google Scholar 

  108. Xu M-Q, Evans TC (2003) Purification of recombinant proteins from E. coli by engineered inteins. Methods Mol Biol 205:43–68

    Google Scholar 

  109. Xu MQ, Evans TC Jr (2005) Recent advances in protein splicing: manipulating proteins in vitro and in vivo. Curr Opin Biotechnol 16:440–446

    Google Scholar 

  110. Xu R, Ayers B, Cowburn D, Muir TW (1999) Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci USA 96:388–393

    ADS  Google Scholar 

  111. Yabe N, Matsuya Y, Yamane I, Takada M (1986) Enhanced formation of mouse hybridomas without hat treatment in a serum-free medium. In Vitro Cell Dev Biol 22:363–368

    Google Scholar 

  112. Yagi H, Tsujimoto T, Yamazaki T, Yoshida M, Akutsu H (2004) Conformational change of H+ -ATPase beta monomer revealed on segmental isotope labeling NMR spectroscopy. J Am Chem Soc 126:16632–16638

    Google Scholar 

  113. Yamaguchi Y (2008) Development and applications of stable-isotope-labeling methods oriented to structural glycobiology. Trends Glycosci Glycotechnol 20:117–130

    Google Scholar 

  114. Yamaguchi Y, Kato K, Shindo M, Aoki S, Furusho K, Koga K, Takahashi N, Arata Y, Shimada I (1998) Dynamics of the carbohydrate chains attached to the Fc portion of immunoglobulin G as studied by NMR spectroscopy assisted by selective 13C labeling of the glycans. J Biomol NMR 12:385–394

    Google Scholar 

  115. Yamaguchi Y, Takizawa T, Kato K, Arata Y, Shimada I (2000) 1H and 13C NMR assignments for the glycans in glycoproteins by using 2H/13C-labeled glucose as a metabolic precursor. J Biomol NMR 18:357–360

    Google Scholar 

  116. Yamaguchi Y, Nishimura M, Nagano M, Yagi H, Sasakawa H, Uchida K, Shitara K, Kato K (2006) Glycoform-dependent conformational alteration of the Fc region of human immunoglobulin G1 as revealed by NMR spectroscopy. Biochim Biophys Acta 1760:693–700

    Google Scholar 

  117. Yamamoto N, Tanabe Y, Okamoto R, Dawson PE, Kajihara Y (2008) Chemical synthesis of a glycoprotein having an intact human complex-type sialyloligosaccharide under the Boc and Fmoc synthetic strategies. J Am Chem Soc 130:501–510

    Google Scholar 

  118. Yamazaki T, Otomo T, Oda N, Kyogoku Y, Uegaki K, Ito N, Ishino Y, Nakamura H (1998) Segmental isotope labeling for protein NMR using peptide splicing. J Am Chem Soc 120:5591–5592

    Google Scholar 

  119. Yu L, Goldman R, Sullivan P, Walker GF, Fesik SW (1993) Heteronuclear NMR studies of 13C-labeled yeast cell wall beta-glucan oligosaccharides. J Biomol NMR 3:429–441

    Google Scholar 

  120. Zhang Y, Vasudevan S, Sojitrawala R, Zhao W, Cui C, Xu C, Fan D, Newhouse Y, Balestra R, Jerome WG, Weisgraber K, Li Q, Wang J (2007) A monomeric, biologically active, full-length human apolipoprotein E. Biochemistry 46:10722–10732

    Google Scholar 

  121. Zhou P, Lugovskoy AA, Wagner G (2001) A solubility-enhancement tag (SET) for NMR studies of poorly behaving proteins. J Biomol NMR 20:11–14

    Google Scholar 

  122. Zuger S, Iwai H (2005) Intein-based biosynthetic incorporation of unlabeled protein tags into isotopically labeled proteins for NMR studies. Nat Biotechnol 23:736–740

    Google Scholar 

  123. Zwahlen C, Legault P, Vincent SJF, Greenblatt J, Konrat R, Kay LE (1997) Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: application to a bacteriophage lambda N-peptide/boxB RNA complex. J Am Chem Soc 119:6711–6721

    Google Scholar 

Download references

Acknowledgments

This investigation was supported by the Swiss National Science Foundation Structural Biology National Center of Competence in Research. We thank Fionna Loughlin for carefully reading the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frédéric H.-T. Allain.

Additional information

Lenka Skrisovska and Mario Schubert contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Skrisovska, L., Schubert, M. & Allain, F.HT. Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J Biomol NMR 46, 51 (2010). https://doi.org/10.1007/s10858-009-9362-7

Download citation

Keywords

  • Segmental isotope labeling
  • Glycoproteins
  • Glycosylation
  • Expressed Protein Ligation
  • Protein Trans-Splicing