Skip to main content
Log in

Conformational entropy changes upon lactose binding to the carbohydrate recognition domain of galectin-3

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The conformational entropy of proteins can make significant contributions to the free energy of ligand binding. NMR spin relaxation enables site-specific investigation of conformational entropy, via order parameters that parameterize local reorientational fluctuations of rank-2 tensors. Here we have probed the conformational entropy of lactose binding to the carbohydrate recognition domain of galectin-3 (Gal3), a protein that plays an important role in cell growth, cell differentiation, cell cycle regulation, and apoptosis, making it a potential target for therapeutic intervention in inflammation and cancer. We used 15N spin relaxation experiments and molecular dynamics simulations to monitor the backbone amides and secondary amines of the tryptophan and arginine side chains in the ligand-free and lactose-bound states of Gal3. Overall, we observe good agreement between the experimental and computed order parameters of the ligand-free and lactose-bound states. Thus, the 15N spin relaxation data indicate that the molecular dynamics simulations provide reliable information on the conformational entropy of the binding process. The molecular dynamics simulations reveal a correlation between the simulated order parameters and residue-specific backbone entropy, re-emphasizing that order parameters provide useful estimates of local conformational entropy. The present results show that the protein backbone exhibits an increase in conformational entropy upon binding lactose, without any accompanying structural changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control AC-19:716–723

    Article  ADS  MathSciNet  Google Scholar 

  • Åkerud T, Thulin E, Van Etten RL, Akke M (2002) Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR. A model for changes in dynamics upon target binding. J Mol Biol 322:137–152

    Article  Google Scholar 

  • Akke M, Brüschweiler R, Palmer AG (1993) NMR order parameters and free energy: an analytical approach and its application to cooperative Ca2+ binding by calbindin D9k. J Am Chem Soc 115:9832–9833

    Article  Google Scholar 

  • Bachhawat-Sikder K, Thomas CJ, Suriola A (2001) Thermodynamic analysis of the binding of galactose and poly-N-acetyllactoseamine derivatives to human galectin-3. FEBS Lett 500:75–79

    Article  Google Scholar 

  • Bax A, Ikura M (1991) An efficient 3D NMR technique for correlating the proton and 15N backbone amide resonances with the α-carbon of the preceding residue in uniformly 15N/13C enriched proteins. J Biomol NMR 1:99–104

    Article  Google Scholar 

  • Berglund H, Baumann H, Knapp S, Ladenstein R, Härd T (1995) Flexibility of an arginine side chain at a DNA-protein interface. J Am Chem Soc 117:12883–12884

    Article  Google Scholar 

  • Bernado P, Garcia de la Torre J, Pons M (2002) Interpretation of 15N NMR relaxation data of globular proteins using hydrodynamic calculations with HYDRONMR. J Biomol NMR 23:139–150

    Article  Google Scholar 

  • Boyd J (1995) Measurement of 15N relaxation data from the side chains of asparagine and glutamine residues in proteins. J Magn Res B 107:279–285

    Article  Google Scholar 

  • Buck M, Karplus M (1999) Internal and overall peptide group motion in proteins: molecular dynamics simulations for lysozyme compared with results from X-ray and NMR spectroscopy. J Am Chem Soc 121:9645–9658

    Article  Google Scholar 

  • Carlsson J, Aqvist J (2005) Absolute and relative entropies from computer simulation with applications to ligand binding. J Phys Chem B 109:6448–6456

    Article  Google Scholar 

  • Case DA (2002) Molecular dynamics and NMR spin relaxation in proteins. Acc Chem Res 35:325–331

    Article  Google Scholar 

  • Case DA, Darden TA, Cheatham TE I, Simmerling CL, Wang J, Duke RE, Luo R, Crowley M, Walker RC, Zhang W, Merz KM, Wang B, Hayik S, Roitberg A, Seabra G, Kolossváry I, Wong KF, Paesani F, Vanicek J, Wu XW, Brozell SR, Steinbrecher T, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Mathews DH, Seetin MG, Sagui C, Babin V, Kollman PA (2008) AMBER 10. University of California, San Francisco

  • Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2007) Protein NMR spectroscopy: principles and practice, 2nd edn. Elsevier, San Diego

    Google Scholar 

  • Chang CE, Chen W, Gilson MK (2005) Evaluating the accuracy of the quasiharmonic approximation. J Chem Theory Comput 1:1017–1028

    Article  Google Scholar 

  • Chang CEA, McLaughlin WA, Baron R, Wang W, McCammon JA (2008) Entropic contributions and the influence of the hydrophobic environment in promiscuous protein–protein association. Proc Natl Acad Sci USA 105:7456–7461

    Article  ADS  Google Scholar 

  • Collins PM, Hidari KIPJ, Blanchard H (2007) Slow diffusion of lactose out of galectin-3 crystals monitored by X-ray crystallography: possible implications for ligand-exchange protocols. Acta Crystallogr D 63:415–419

    Article  Google Scholar 

  • Cooper A, Dryden DTF (1984) Allostery without conformational change. A plausible model. Eur Biophys J 11:103–109

    Article  Google Scholar 

  • d’Auvergne EJ, Gooley PR (2008) Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces. J Biomol NMR 40:107–119

    Article  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald—an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Edholm O, Berendsen HJC (1984) Entropy estimation from simulations of non-diffusive systems. Mol Phys 51:1011–1028

    Article  ADS  Google Scholar 

  • Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statist sci 1:54–77

    Article  MathSciNet  Google Scholar 

  • Fadel AR, Jin DQ, Montelione GT, Levy RM (1995) Crankshaft motions of the polypeptide backbone in molecular-dynamics simulations of human type-alpha transforming growth-factor. J Biomol NMR 6:221–226

    Article  Google Scholar 

  • Farmer BT, Venters RA (1995) Assignment of side-chain 13C resonances in perdeuterated proteins. J Am Chem Soc 117:4187–4188

    Article  Google Scholar 

  • Farmer BT, Venters RA, Spicer LD, Wittekind MG, Muller L (1992) A refocused and optimized Hnca—increased sensitivity and resolution in large macromolecules. J Biomol NMR 2:195–202

    Article  Google Scholar 

  • Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Forman-Kay JD, Kay LE (1994) Backbone dynamics of a free and a phosphopeptide-complexed src homology 2 domain studied by 15N NMR relaxation. Biochemistry 33:5984–6003

    Article  Google Scholar 

  • Fitzgerald JE, Jha AK, Sosnick TR, Freed KF (2007) Polypeptide motions are dominated by peptide group oscillations resulting from dihedral angle correlations between nearest neighbors. Biochemistry 46:669–682

    Article  Google Scholar 

  • Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448:325–330

    Article  ADS  Google Scholar 

  • Gohlke H, Case DA (2004) Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras–Raf. J Comput Chem 25:238–250

    Article  Google Scholar 

  • Grzesiek S, Bax A (1992) Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. J Magn Reson 96:432–440

    Google Scholar 

  • Hill TL (1986) An introduction to statistical thermodynamics. Dover, New York

    Google Scholar 

  • Homans SW (2005) Probing the binding entropy of ligand–protein interactions by NMR. Chembiochem 6:1585–1591

    Article  Google Scholar 

  • Horn HW, Swope WC, Pitera JW, Madura JD, Dick TJ, Hura GL, Head-Gordon T (2004) Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J Chem Phys 120:9665–9678

    Article  ADS  Google Scholar 

  • Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  Google Scholar 

  • Igumenova TI, Frederick KK, Wand AJ (2006) Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem Rev 106:1672–1699

    Article  Google Scholar 

  • Iwahara J, Jung YS, Clore GM (2007) Heteronuclear NMR spectroscopy for lysine NH3 groups in proteins: unique effect of water exchange on N-15 transverse relaxation. J Am Chem Soc 129:2971–2980

    Article  Google Scholar 

  • Jarymowycz VA, Stone MJ (2006) Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106:1624–1671

    Article  Google Scholar 

  • Jin C, Prompers JJ, Brüschweiler R (2003) Cross-correlation suppressed T1 and NOE experiments for protein side-chain 13CH2 groups. J Biomol NMR 26:241–247

    Article  Google Scholar 

  • Karplus M, Kushick JN (1981) Method for estimating the configurational entropy of macromolecules. Macromolecules 14:325–332

    Article  ADS  Google Scholar 

  • Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  Google Scholar 

  • Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514

    Google Scholar 

  • Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 29:622–655

    Article  Google Scholar 

  • Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case DA, Cheatham TE III (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 33:889–897

    Google Scholar 

  • Koradi R, Billeter M, Wüthrich K (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graphics 14:51–55

    Article  Google Scholar 

  • Kroenke CD, Rance M, Palmer AG (1999) Variability of the 15N chemical shift anisotropy in Escherichia coli ribonuclease H in solution. J Am Chem Soc 121:10119–10125

    Article  Google Scholar 

  • Li H, Robertson AD, Jensen JH (2005) Very fast empirical prediction and rationalization of protein pKa values. Proteins 61:704–721

    Article  Google Scholar 

  • Lian L-Y, Middleton DA (2001) Labelling approaches for protein structural studies by solution-state and solid-state NMR. Progr NMR Spectrosc 39:171–190

    Article  Google Scholar 

  • Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. I. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  Google Scholar 

  • Lu C-Y, Bout DAV (2006) Effect of finite trajectory length on the correlation function analysis of single molecule data. J Chem Phys 125:124701–124709

    Article  ADS  Google Scholar 

  • Lundström P, Teilum K, Carstensen T, Bezsonova I, Wiesner S, Hansen F, Religa TL, Akke M, Kay LE (2007) Fractional 13C enrichment of isolated carbons using [1–13C]- or [2–13C]-glucose facilitates the accurate measurement of dynamics at backbone Ca and side-chain methyl positions in proteins. J Biomol NMR 38:199–212

    Article  Google Scholar 

  • Macek P, Novak P, Zidek L, Sklenar V (2007) Backbone motions of free and pheromone-bound major urinary protein I studied by molecular dynamics simulation. J Phys Chem B 111:5731–5739

    Article  Google Scholar 

  • Madsen H (2008) Time series analysis. Chapman & Hall/CRC, New York

    MATH  Google Scholar 

  • Mandel AM, Akke M, Palmer AG (1995) Backbone dynamics of Eschericia coli Ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol 246:144–163

    Article  Google Scholar 

  • Massa SM, Cooper DN, Leffler H, Barondes SH (1993) L-29, an endogenous lectin, binds to glycoconjugate ligands with positive cooperativity. Biochemistry 32:260–267

    Article  Google Scholar 

  • Palmer AG (2001) NMR probes of molecular dynamics: overview and comparison with other techniques. Annu Rev Biophys Biomol Struct 30:129–155

    Article  Google Scholar 

  • Paquin R, Ferrage F, Mulder FAA, Akke M, Bodenhausen G (2008) Multiple-timescale dynamics of side-chain carboxyl and carbonyl groups in proteins by C-13 nuclear spin relaxation. J Am Chem Soc 130:15805–15807

    Article  Google Scholar 

  • Prabhu NV, Lee AL, Wand AJ, Sharp KA (2003) Dynamics and entropy of a calmodulin–peptide complex studied by NMR and molecular dynamics. Biochemistry 42:562–570

    Article  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. The art of scientific computing. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Prompers JJ, Brüschweiler R (2000) Thermodynamic interpretation of NMR relaxation parameters in proteins in the presence of motional correlations. J Phys Chem B 104:11416–11424

    Article  Google Scholar 

  • Prompers JJ, Brüschweiler R (2002) General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation. J Am Chem Soc 124:4522–4534

    Article  Google Scholar 

  • Ramamoorthy A, Wu CH, Opella SJ (1997) Magnitudes and orientations of the principal elements of the H-1 chemical shift, H-1-N-15 dipolar coupling, and N-15 chemical shift interaction tensors in N-15(epsilon 1)-tryptophan and N-15(pi)-histidine side chains determined by three-dimensional solid-state NMR spectroscopy of polycrystalline samples. J Am Chem Soc 119:10479–10486

    Article  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical-integration of cartesian equations of motion of a system with constraints—molecular-dynamics of N-alkanes. J Comp Phys 23:327–341

    Article  ADS  Google Scholar 

  • Schafer H, Smith LJ, Mark AE, van Gunsteren WF (2002) Entropy calculations on the molten globule state of a protein: side-chain entropies of alpha-lactalbumin. Proteins 46:215–224

    Article  Google Scholar 

  • Schurr JM, Babcock HP, Fujimoto BS (1994) A test of the model-free formulas. Effects of anisotropic rotational diffusion and dimerization. J Magn Res B 105:211–224

    Article  Google Scholar 

  • Shimazaki H, Shinomoto S (2007) A method for selecting the bin size of a time histogram. Neural Comput 19:1503–1527

    Article  MATH  MathSciNet  Google Scholar 

  • Showalter SA, Brüschweiler R (2007) Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: application to the AMBER99SB force field. J Chem Theory Comput 3:961–975

    Article  Google Scholar 

  • Teilum K, Brath U, Lundström P, Akke M (2006) Biosynthetic 13C labeling of aromatic side-chains in proteins for NMR relaxation measurements. J Am Chem Soc 128:2506–2507

    Article  Google Scholar 

  • Trbovic N, Cho J-H, Abel R, Friesner RA, Rance M, Palmer AG (2009) Protein side-chain dynamics and residual conformational entropy. J Am Chem Soc 131:615–622

    Article  Google Scholar 

  • Umemoto K, Leffler H (2001) Assignment of 1H, 15N and 13C resonances of the carbohydrate recognition domain of human galectin-3. J Biomol NMR 20:91–92

    Article  Google Scholar 

  • Umemoto K, Leffler H, Venot A, Valafar H, Prestegard JH (2003) Conformational differences in liganded and unliganded states of Galectin-3. Biochemistry 42:3688–3695

    Article  Google Scholar 

  • Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas P, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59:687–696

    Article  Google Scholar 

  • Wittekind M, Mueller L (1993) HNCACB, a high-sensitivity 3D NMR experiment to correlate amide-proton and nitrogen resonances with the alpha- and beta-carbon resonances in proteins. J Magn Res B 101:201–205

    Article  Google Scholar 

  • Wrabl JO, Shortle D, Woolf TB (2000) Correlation between changes in nuclear magnetic resonance order parameters and conformational entropy: molecular dynamics simulations of native and denatured staphylococcal nuclease. Proteins 38:123–133

    Article  Google Scholar 

  • Wu XW, Brooks BR (2003) Self-guided Langevin dynamics simulation method. Chem Phys Lett 381:512–518

    Article  ADS  Google Scholar 

  • Yamazaki T, Pascal SM, Singer AU, Formankay JD, Kay LE (1995) Nmr pulse schemes for the sequence-specific assignment of arginine guanidino N-15 and H-1 chemical-shifts in proteins. J Am Chem Soc 117:3556–3564

    Article  Google Scholar 

  • Yang D, Kay LE (1996) Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J Mol Biol 263:369–382

    Article  Google Scholar 

  • Yang D, Mittermaier A, Mok Y-K, Kay LE (1998) A study of protein side-chain dynamics from new 2H auto-correlation and 13C cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk. J Mol Biol 276:939–954

    Article  Google Scholar 

  • Zheng Y, Yang D (2004) Measurement of dipolar cross-correlation in methylene groups in uniformly 13C-, 15N-labeled proteins. J Biomol NMR 28:103–116

    Article  Google Scholar 

  • Zidek L, Novotny MV, Stone MJ (1999) Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nat Struct Biol 6:1118–1121

    Article  Google Scholar 

  • Zwansig R, Ailawadi NK (1969) Statistical error due to finite time averaging in computer experiments. Phys Rev 1982:280–282

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish Research Council (MA, UR), The Göran Gustafsson Foundation for Research in Natural Sciences and Medicine (MA), and the FLÄK Research School for Pharmaceutical Sciences at Lund University (MA, UR). Computer resources were provided by Lunarc at Lund University and HPC2N at Umeå University. We thank Hakon Leffler for the plasmid harboring the Gal3-thioredoxin fusion construct, and HL, Ulf Nilsson, and Gunnar Karlström for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ulf Ryde or Mikael Akke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diehl, C., Genheden, S., Modig, K. et al. Conformational entropy changes upon lactose binding to the carbohydrate recognition domain of galectin-3. J Biomol NMR 45, 157–169 (2009). https://doi.org/10.1007/s10858-009-9356-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-009-9356-5

Keywords

Navigation