Skip to main content
Log in

Automated protein structure calculation from NMR data

  • Perspective
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Current software is almost at the stage to permit completely automatic structure determination of small proteins of <15 kDa, from NMR spectra to structure validation with minimal user interaction. This goal is welcome, as it makes structure calculation more objective and therefore more easily validated, without any loss in the quality of the structures generated. Moreover, it releases expert spectroscopists to carry out research that cannot be automated. It should not take much further effort to extend automation to ca 20 kDa. However, there are technological barriers to further automation, of which the biggest are identified as: routines for peak picking; adoption and sharing of a common framework for structure calculation, including the assembly of an automated and trusted package for structure validation; and sample preparation, particularly for larger proteins. These barriers should be the main target for development of methodology for protein structure determination, particularly by structural genomics consortia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Plus of course it makes it harder to publish a new structure.

  2. The distribution of structures represented by an NMR ensemble is not (as one might expect) a representation of the true precision of the calculation. Rather, it is a representation of the reproducibility of the algorithm given the input data (Markwick et al. 2008). However, this is a subtlety that is easily overlooked.

  3. Kujira is Japanese for whale: a reference to the size and complexity of the program?

References

  • AB E, Atkinson AR, Banci L, Bertini I, Ciofi-Baffoni S, Brunner K, Diercks T, Dötsch V, Engelke F, Folkers GE, Griesinger C, Gronwald W, Günther U, Habeck M, de Jong RN, Kalbitzer HR, Kieffer B, Leeflang BR, Loss S, Luchinat C, Marquardsen T, Moskau D, Neidig KP, Nilges M, Piccioli M, Pierattelli R, Rieping W, Schippmann T, Schwalbe H, Travé G, Trenner J, Wöhnert J, Zweckstetter M, Kaptein R (2006) NMR in the SPINE structural proteomics project. Acta Cryst Sect D 62:1150–1161

    Article  Google Scholar 

  • Adams MWW, Dailey HA, Delucas LJ, Luo M, Prestegard JH, Rose JP, Wang BC (2003) The southeast collaboratory for structural genomics: A high-throughput gene to structure factory. Accounts Chem Res 36:191–198

    Article  Google Scholar 

  • Altieri AS, Byrd RA (2004) Automation of NMR structure determination of proteins. Curr Opin Struct Biol 14:547–553

    Article  Google Scholar 

  • Andrec M, Snyder DA, Zhou ZY, Young J, Montelione GT, Levy RM (2007) A large data set comparison of protein structures determined by crystallography and NMR: statistical test for structural differences and the effect of crystal packing. Proteins: Struct Funct Bioinf 69:449–465

    Article  Google Scholar 

  • Atreya HS, Szyperski T (2004) G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment. Proc Natl Acad Sci USA 101:9642–9647

    Article  ADS  Google Scholar 

  • Baran MC, Huang YJ, Moseley HNB, Montelione GT (2004) Automated analysis of protein NMR assignments and structures. Chem Rev 104:3541–3555

    Article  Google Scholar 

  • Barna JCJ, Laue ED, Mayger MR, Skilling J, Worrall SJP (1987) Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J Magn Reson 73:69–77

    Google Scholar 

  • Bartels C, Xia TH, Billeter M, Güntert P, Wüthrich K (1995) The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J Biomol NMR 6:1–10

    Article  Google Scholar 

  • Bartels C, Güntert P, Billeter M, Wüthrich K (1997) GARANT—A general algorithm for resonance assignment of multidimensional nuclear magnetic resonance spectra. J Comp Chem 18:139–149

    Article  Google Scholar 

  • Bhattacharya A, Tejero R, Montelione GT (2007) Evaluating protein structures determined by structural genomics consortia. Proteins: Struct Funct Bioinf 66:778–795

    Article  Google Scholar 

  • Billeter M, Wagner G, Wüthrich K (2008) Solution NMR determination of proteins revisited. J Biomol NMR 42:155–158

    Article  Google Scholar 

  • Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Cryst D 54:905–921

    Article  Google Scholar 

  • Burley SK (2000) An overview of structural genomics. Nature Struct Biol 7:932–934

    Article  Google Scholar 

  • Chandonia JM, Brenner SE (2006) The impact of structural genomics: expectations and outcomes. Science 311:347–351

    Article  ADS  Google Scholar 

  • Chen L, Oughtred R, Berman HM, Westbrook J (2004) TargetDB: a target registration database for structural genomics projects. Bioinformatics 20:2860–2862

    Article  Google Scholar 

  • Christendat D, Yee A, Dharamsi A, Kluger Y, Savchenko A, Cort JR, Booth V, Mackereth CD, Saridakis V, Ekiel I, Kozlov G, Maxwell KL, Wu N, McIntosh LP, Gehring K, Kennedy MA, Davidson AR, Pai EF, Gerstein M, Edwards AM, Arrowsmith CH (2000) Structural proteomics of an archaeon. Nature Struct Biol 7:903–909

    Article  Google Scholar 

  • Cyranoski D (2006) ‘Big science’ protein project under fire. Nature 443:382

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on Unix pipe. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Fiorito F, Herrmann T, Damberger FF, Wüthrich K (2008) Automated amino acid side-chain NMR assignment of proteins using 13C- and 15N-resolved 3D [1H, 1H]-NOESY. J Biomol NMR 42:23–33

    Article  Google Scholar 

  • Fossi M, Linge J, Labudde D, Leitner D, Nilges M, Oschkinat H (2005a) Influence of chemical shift tolerances on NMR structure calculations using ARIA protocols for assigning NOE data. J Biomol NMR 31:21–34

    Article  Google Scholar 

  • Fossi M, Oschkinat H, Nilges M, Ball LJ (2005b) Quantitative study of the effects of chemical shift tolerances and rates of SA cooling on structure calculation from automatically assigned NOE data. J Magn Reson 175:92–102

    Article  ADS  Google Scholar 

  • Gräslund S, Nordlund P, Weigelt J, Bray J, Hallberg BM, Gileadi O, Knapp S, Oppermann U, Arrowsmith C, Hui R, Ming J, Dhe-Paganon S, Park HW, Savchenko A, Yee A, Edwards A, Vincentelli R, Cambillau C, Kim R, Kim SH, Rao Z, Shi Y, Terwilliger TC, Kim CY, Hung LW, Waldo GS, Peleg Y, Albeck S, Unger T, Dym O, Prilusky J, Sussman JL, Stevens RC, Lesley SA, Wilson IA, Joachimiak A, Collart F, Dementieva I, Donnelly MI, Eschenfeldt WH, Kim Y, Stols L, Wu R, Zhou M, Burley SK, Emtage JS, Sauder JM, Thompson D, Bain K, Luz J, Gheyi T, Zhang F, Atwell S, Almo SC, Bonanno JB, Fiser A, Swaminathan S, Studier FW, Chance MR, Sali A, Acton TB, Xiao R, Zhao L, Ma LC, Hunt JF, Tong L, Cunningham K, Inouye M, Anderson S, Janjua H, Shastry R, Ho CK, Wang DY, Wang H, Jiang M, Montelione GT, Stuart DI, Owens RJ, Daenke S, Schütz A, Heinemann U, Yokoyama S, Büssow K, Gunsalus KC (2008) Protein production and purification. Nature Methods 5:135–146

    Article  Google Scholar 

  • Grishaev A, Llinás M (2002) CLOUDS, a protocol for deriving a molecular proton density via NMR. Proc Natl Acad Sci USA 99:6707–6712

    Article  ADS  Google Scholar 

  • Grishaev A, Steren CA, Wu B, Pineda-Lucena A, Arrowsmith C, Llinás M (2005) ABACUS, a direct method for protein NMR structure computation via assembly of fragments. Proteins: Struct Funct Bioinf 61:36–43

    Article  Google Scholar 

  • Gronwald W, Kalbitzer HR (2004) Automated structure determination of proteins by NMR spectroscopy. Progr Nucl Magn Reson Spectrosc 44:33–96

    Article  Google Scholar 

  • Güntert P, Mumenthaler C, Wüthrich K (1997) Torsion angle dynamics for NMR structure calculation with the new program DYANA. J Mol Biol 273:283–298

    Article  Google Scholar 

  • Güntert P (2003) Automated NMR protein structure calculation. Progr NMR Spectrosc 43:105–125

    Article  Google Scholar 

  • Güntert P (2008) Automated structure determination from NMR spectra. Eur Biophys J 38 (in press)

  • Heinemann U (2000) Structural genomics in Europe: slow start, strong finish? Nature Struct Biol 7:940–942

    Article  Google Scholar 

  • Herrmann T, Güntert P, Wüthrich K (2002) Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol 319:209–227

    Article  Google Scholar 

  • Hiller S, Wasmer C, Wider G, Wüthrich K (2007) Sequence-specific resonance assignment of soluble nonglobular proteins by 7D APSY-NMR Spectroscopy. J Am Chem Soc 129:10823–10828

    Article  Google Scholar 

  • Hitchens TK, Lukin JA, Zhan YP, McCallum SA, Rule GS (2003) MONTE: an automated Monte Carlo based approach to nuclear magnetic resonance assignment of proteins. J Biomol NMR 25:1–9

    Article  Google Scholar 

  • Huang YPJ, Moseley HNB, Baran MC, Arrowsmith C, Powers R, Tejero R, Szyperski T, Montelione GT (2005) An integrated platform for automated analysis of protein NMR structures. Methods Enzymol 394:111–141

    Article  Google Scholar 

  • Jahnke W (2007) Perspectives of biomolecular NMR in drug discovery: the blessing and curse of versatility. J Biomol NMR 39:87–90

    Article  Google Scholar 

  • Jee J, Güntert P (2003) Influence of the completeness of chemical shift assignments on NMR structures obtained with automated NOE assignment. J Struct Funct Genomics 4:179–189

    Article  Google Scholar 

  • Johnson BA, Blevins RA (1994) NMRView: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4:603–614

    Article  Google Scholar 

  • Kamisetty H, Bailey-Kellogg C, Pandurangan G (2006) An efficient randomized algorithm for contact-based NMR backbone resonance assignment. Bioinformatics 22:172–180

    Article  Google Scholar 

  • Kobayashi N, Iwahara J, Koshiba S, Tomizawa T, Tochio N, Güntert P, Kigawa T, Yokoyama S (2007) KUJIRA, a package of integrated modules for systematic and interactive analysis of NMR data directed to high-throughput NMR structure studies. J Biomol NMR 39:31–52

    Article  Google Scholar 

  • Korukottu J, Bayrhuber M, Montaville P, Vijayan V, Jung YS, Becker S, Zweckstetter M (2007) Fast high-resolution protein structure determination by using unassigned NMR data. Angewandte Chemie Int Ed 46:1176–1179

    Article  Google Scholar 

  • Kupče E, Freeman R (2004) Projection-reconstruction technique for speeding up multidimensional NMR spectroscopy. J Am Chem Soc 126:6429–6440

    Article  Google Scholar 

  • Kuszewski J, Schwieters CD, Garrett DS, Byrd RA, Tjandra N, Clore GM (2004) Completely automated, highly error-tolerant macromolecular structure determination from multidimensional nuclear Overhauser enhancement spectra and chemical shift assignments. J Am Chem Soc 126:6258–6273

    Article  Google Scholar 

  • Kuszewski JJ, Thottungal RA, Clore GM, Schwieters CD (2008) Automated error-tolerant macromolecular structure determination from multidimensional nuclear Overhauser enhancement spectra and chemical shift assignments: improved robustness and performance of the PASD algorithm. J Biomol NMR 41:221–239

    Article  Google Scholar 

  • Levitt M (2007) Growth of novel protein structural data. Proc Natl Acad Sci USA 104:3183–3188

    Article  ADS  Google Scholar 

  • Linge JP, Habeck M, Rieping W, Nilges M (2003a) ARIA: automated NOE assignment and NMR structure calculation. Bioinformatics 19:315–316

    Article  Google Scholar 

  • Linge JP, Williams MA, Spronk CAEM, Bonvin AMJJ, Nilges M (2003b) Refinement of protein structures in explicit solvent. Proteins: Struct Funct Bioinf 50:496–506

    Article  Google Scholar 

  • Liu GH, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao R, Yee A, Lemak A, Bhattacharya A, Acton TA, Arrowsmith CH, Montelione GT, Szyperski T (2005) NMR data collection and analysis protocol for high-throughput protein structure determination. Proc Natl Acad Sci USA 102:10487–10492

    Article  ADS  Google Scholar 

  • López-Méndez B, Güntert P (2006) Automated protein structure determination from NMR spectra. J Am Chem Soc 128:13112–13122

    Article  Google Scholar 

  • Malmodin D, Papavoine CHM, Billeter M (2003) Fully automated sequence-specific resonance assignments of heteronuclear protein spectra. J Biomol NMR 27:69–79

    Article  Google Scholar 

  • Malmodin D, Billeter M (2005) High-throughput analysis of protein NMR spectra. Progr NMR Spectrosc 46:109–129

    Article  Google Scholar 

  • Markwick PRL, Malliavin T, Nilges M (2008) Structural biology by NMR: structure, dynamics and interactions. PLOS Comput Biol 4:e1000168

    Article  Google Scholar 

  • Meiler J, Baker D (2003) Rapid protein fold determination using unassigned NMR data. Proc Natl Acad Sci USA 100:15404–15409

    Article  ADS  Google Scholar 

  • Moseley HNB, Monleon D, Montelione GT (2001) Automatic determination of protein backbone resonance assignments from triple resonance nuclear magnetic resonance data. Methods Enzymol 339:91–108

    Article  Google Scholar 

  • Moseley HNB, Riaz N, Aramini JM, Szyperski T, Montelione GT (2004a) A generalized approach to automated NMR peak list editing: application to reduced dimensionality triple resonance spectra. J Magn Reson 170:263–277

    Article  ADS  Google Scholar 

  • Moseley HNB, Sahota G, Montelione GT (2004b) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355

    Article  Google Scholar 

  • Nabuurs SB, Nederveen AJ, Vranken W, Doreleijers JF, Bonvin AMJJ, Vuister GW, Vriend G, Spronk CAEM (2004) DRESS: a database of REfined solution NMR structures. Proteins: Struct Funct Bioinf 55:483–486

    Article  Google Scholar 

  • Nederveen AJ, Doreleijers JF, Vranken W, Miller Z, Spronk CAEM, Nabuurs SB, Güntert P, Livny M, Markley JL, Nilges M, Ulrich EL, Kaptein R, Bonvin AMJJ (2005) RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins: Struct Funct Bioinf 59:662–672

    Article  Google Scholar 

  • Nilges M (1995) Calculation of protein structures with ambiguous distance restraints: automated assignment of ambiguous NOE crosspeaks and disulfide connectivities. J Mol Biol 245:645–660

    Article  Google Scholar 

  • Nilges M, O’Donoghue SI (1998) Ambiguous NOEs and automated NOE assignment. Progr NMR Spectrosc 32:107–139

    Article  Google Scholar 

  • Pawley NH, Gans JD, Michalczyk R (2005) APART: automated preprocessing for NMR assignments with reduced tedium. Bioinformatics 21:680–682

    Article  Google Scholar 

  • Ramelot TA, Raman S, Kuzin AP, Xiao R, Ma LC, Acton TB, Hunt JF, Montelione GT, Baker D, Kennedy MA (2009) Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study. Proteins: Struct Funct Bioinf (in press)

  • Rieping W, Habeck M, Bardiaux B, Bernard A, Malliavin TE, Nilges M (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23:381–382

    Article  Google Scholar 

  • Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The XPLOR-NIH NMR molecular structure determination package. J Magn Reson 160:65–73

    Article  ADS  Google Scholar 

  • Scott A, López-Méndez B, Güntert P (2006) Fully automated structure determinations of the Fes SH2 domain using different sets of NMR spectra. Magn Reson Chem 44:S83–S88

    Article  Google Scholar 

  • Shen Y, Atreya HS, Liu GH, Szyperski T (2005) G-matrix Fourier transform NOESY-based protocol for high-quality protein structure determination. J Am Chem Soc 127:9085–9099

    Article  Google Scholar 

  • Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu GH, Eletsky A, Wu YB, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    Article  ADS  Google Scholar 

  • Skrisovska L, Allain FHT (2008) Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L. J Mol Biol 375:151–164

    Article  Google Scholar 

  • Slupsky CM, Boyko RF, Booth VK, Sykes BD (2003) Smartnotebook: a semi-automated approach to protein sequential NMR resonance assignments. J Biomol NMR 27:313–321

    Article  Google Scholar 

  • Snyder DA, Bhattacharya A, Huang YPJ, Montelione GT (2005) Assessing precision and accuracy of protein structures derived from NMR data. Proteins: Struct Funct Bioinf 59:655–661

    Article  Google Scholar 

  • Spronk CAEM, Nabuurs SB, Bonvin AMJJ, Krieger E, Vuister GW, Vriend G (2003) The precision of NMR structure ensembles revisited. J Biomol NMR 25:225–234

    Article  Google Scholar 

  • Spronk CAEM, Nabuurs SB, Krieger E, Vriend G, Vuister GW (2004) Validation of protein structures derived by NMR spectroscopy. Progr NMR Spectrosc 45:315–337

    Article  Google Scholar 

  • Takeda M, Ikeya T, Güntert P, Kainosho M (2007) Automated structure determination of proteins with the SAIL-FLYA NMR method. Nat Protoc 2:2896–2902

    Article  Google Scholar 

  • Terwilliger TC (2000) Structural genomics in North America. Nature Struct Biol 7:935–939

    Article  Google Scholar 

  • Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinás P, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins: Struct Funct Bioinf 59:687–696

    Article  Google Scholar 

  • Williamson MP, Havel TF, Wüthrich K (1985) Solution conformation of proteinase inhibitor IIA from bull seminal plasma by 1H nuclear magnetic resonance and distance geometry. J Mol Biol 182:295–315

    Article  Google Scholar 

  • Xiong F, Pandurangan G, Bailey-Kellogg C (2008) Contact replacement for NMR resonance assignment. Bioinformatics 24:I205–I213

    Article  Google Scholar 

  • Yagi H, Tsujimoto T, Yamazaki T, Yoshida M, Akutsu H (2004) Conformational change of H+-ATPase β monomer revealed on segmental isotope labeling NMR spectroscopy. J Am Chem Soc 126:16632–16638

    Article  Google Scholar 

  • Yee A, Chang XQ, Pineda-Lucena A, Wu B, Semesi A, Le B, Ramelot T, Lee GM, Bhattacharyya S, Gutierrez P, Denisov A, Lee CH, Cort JR, Kozlov G, Liao J, Finak G, Chen L, Wishart D, Lee W, McIntosh LP, Gehring K, Kennedy MA, Edwards AM, Arrowsmith CH (2002) An NMR approach to structural proteomics. Proc Natl Acad Sci USA 99:1825–1830

    Article  ADS  Google Scholar 

  • Yee A, Pardee K, Christendat D, Savchenko A, Edwards AM, Arrowsmith CH (2003) Structural proteomics: toward high-throughput structural biology as a tool in functional genomics. Accounts Chem Res 36:183–189

    Article  Google Scholar 

  • Yee A, Gutmanas A, Arrowsmith CH (2006) Solution NMR in structural genomics. Curr Opin Struct Biol 16:611–617

    Article  Google Scholar 

  • Yokoyama S, Hirota H, Kigawa T, Yabuki T, Shlrouzu M, Terada T, Ito Y, Matsuo Y, Kuroda Y, Nishimura Y, Kyogoku Y, Miki K, Masui R, Kuramitsu S (2000) Structural genomics projects in Japan. Nature Struct Biol 7:943–945

    Article  Google Scholar 

  • Yokoyama S, Terwilliger TC, Kuramitsu S, Moras D, Sussman JL, Comm IE (2007) RIKEN aids international structural genomics efforts. Nature 445:21

    Article  ADS  Google Scholar 

  • Zimmerman DE, Kulikowski CA, Huang YP, Feng WQ, Tashiro M, Shimotakahara S, Chien CY, Powers R, Montelione GT (1997) Automated analysis of protein NMR assignments using methods from artificial intelligence. J Mol Biol 269:592–610

    Article  Google Scholar 

Download references

Acknowledgments

We thank members of the Editorial Board of JBNMR for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike P. Williamson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williamson, M.P., Craven, C.J. Automated protein structure calculation from NMR data. J Biomol NMR 43, 131–143 (2009). https://doi.org/10.1007/s10858-008-9295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-008-9295-6

Keywords

Navigation