Skip to main content
Log in

Comparison of multiple crystal structures with NMR data for engrailed homeodomain

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Two methods are currently available to solve high resolution protein structures—X-ray crystallography and nuclear magnetic resonance (NMR). Both methods usually produce highly similar structures, but small differences between both solutions are always observed. Here the raw NMR data as well as the solved NMR structure were compared to the multiple crystal structures solved for the WT 60 residue three helix bundle engrailed homeodomain (EnHD) and single point mutants. There was excellent agreement between TALOS-predicted and crystal structure-observed dihedral angles and a good agreement for the 3 J(H N H α) couplings for the multiple crystal structures. Around 1% of NOEs were violated for any crystal structure, but no NOE was inconsistent with all of the crystal structures. Violations usually occurred for surface residues or for residues for which multiple discreet conformations were observed between the crystal structures. Comparison of the disorder shown in the multiple crystal structures shows little correlation with dynamics under native conditions for this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12:1–16

    Article  Google Scholar 

  • Bax A, Ikura M, Kay LE, Barbato G, Spera S (1991) Multidimensional triple resonance NMR spectroscopy of isotopically uniformly enriched proteins: a powerful new strategy for structure determination. Ciba Found Symp 161, 108–119; discussion 119–135

    Google Scholar 

  • Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  ADS  Google Scholar 

  • Best RB, Clarke J, Karplus M (2004) The origin of protein sidechain order parameter distributions. J Am Chem Soc 126:7734–7735

    Article  Google Scholar 

  • Best RB, Clarke J, Karplus M (2005) What contributions to protein side-chain dynamics are probed by NMR experiments? A molecular dynamics simulation analysis. J Mol Biol 349:185–203

    Article  Google Scholar 

  • Best RB, Lindorff-Larsen K, DePristo MA, Vendruscolo M (2006) Relation between native ensembles and experimental structures of proteins. Proc Natl Acad Sci USA 103:10901–10906

    Article  ADS  Google Scholar 

  • Billeter M (1992) Comparison of protein structures determined by NMR in solution and by X-ray diffraction in single crystals. Q Rev Biophys 25:325–377

    Article  Google Scholar 

  • Bonvin AM, Brunger AT (1996) Do NOE distances contain enough information to assess the relative populations of multi-conformer structures? J Biomol NMR 7:72–76

    Article  Google Scholar 

  • Brunger AT (1997) X-ray crystallography and NMR reveal complementary views of structure and dynamics. Nat Struct Biol 4 (Suppl):862–865

    Google Scholar 

  • Brunger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54:905–921

    Article  Google Scholar 

  • Chou JJ, Gaemers S, Howder B, Louis JM, Bax A (2001) A simple apparatus for generating stretched polyacrylamide gels, yielding uniform alignment of proteins and detergent micelles. J Biomol NMR 21:377–382

    Article  Google Scholar 

  • Chou JJ, Case DA, Bax A (2003) Insights into the mobility of methyl-bearing side chains in proteins from (3)J(CC) and (3)J(CN) couplings. J Am Chem Soc 125:8959–8966

    Article  Google Scholar 

  • Clarke ND, Kissinger CR, Desjarlais J, Gilliland GL, Pabo CO (1994) Structural studies of the engrailed homeodomain. Protein Sci 3:1779–1787

    Google Scholar 

  • Clore GM, Schwieters CD (2006) Concordance of residual dipolar couplings, backbone order paramters and crystallographic B-factors for a small alpha/beta protein: a unified picture of high probability, fast atomic motions in proteins. J Mol Biol 355:879–886

    Article  Google Scholar 

  • Cordier F, Grzesiek S (1999) Direct observation of hydrogen bonds in proteins by interresidue (3h)J(NC′) scalar couplings. J Am Chem Soc 121:1601–1602

    Article  Google Scholar 

  • Cordier F, Dingley AJ, Grzesiek S (1999) A doublet-separated sensitivity-enhanced HSQC for the determination of scalar and dipolar one-bond J-couplings. J Biomol NMR 13:175–180

    Article  Google Scholar 

  • Cornilescu G, Marquardt JL, Ottiger M, Bax A (1998) Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J Am Chem Soc 120:6836–6837

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • DePristo MA, de Bakker PI, Blundell TL (2004) Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography. Structure 12:831–838

    Article  Google Scholar 

  • Dosset P, Hus JC, Blackledge M, Marion D (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR 16:23–28

    Article  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  ADS  Google Scholar 

  • Farrow NA, Zhang OW, Forman-Kay JD, Kay LE (1995) Comparison of the backbone dynamics of a folded and an unfolded SH3 domain existing in equilibrium in aqueous buffer. Biochemistry 34:868–878

    Article  Google Scholar 

  • Fletcher CM, Jones DNM, Diamond R, Neuhaus D (1996) Treatment of NOE constraints involving equivalent or nonstereoassigned protons in calculations of biomacromolecular structures. J Biomol NMR 8:292–310

    Article  Google Scholar 

  • Fraenkel E, Rould MA, Chambers KA, Pabo CO (1998) Engrailed homeodomain-DNA complex at 2.2 A resolution: a detailed view of the interface and comparison with other engrailed structures. J Mol Biol 284:351–361

    Article  Google Scholar 

  • Goddard TD, Kneller DG SPARKY 3. University of California, San Francisco

  • Grant RA, Rould MA, Klemm JD, Pabo CO (2000) Exploring the role of glutamine 50 in the homeodomain-DNA interface: crystal structure of engrailed (Gln50 → Ala) complex at 2.0 A. Biochemistry 39:8187–8192

    Article  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997). LINCS: a linear constraint solver for molecular simulations. J Computat Chem 18:1463–1472

    Article  Google Scholar 

  • Higman VA, Boyd J, Smith LJ, Redfield C (2004) Asparagine and glutamine side-chain conformation in solution and crystal: a comparison for hen egg-white lysozyme using residual dipolar couplings. J Biomol NMR 30:327–346

    Article  Google Scholar 

  • Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487

    Article  Google Scholar 

  • Karplus M (1959) Contact electron-spin coupling of nuclear magnetic moments. J Chem Phys 30:11–15

    Article  ADS  Google Scholar 

  • Kissinger CR, Liu BS, Martin-Blanco E, Kornberg TB, Pabo CO (1990) Crystal structure of an engrailed homeodomain-DNA complex at 2.8 A resolution: a framework for understanding homeodomain-DNA interactions. Cell 63:579–590

    Article  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    Google Scholar 

  • Lipari G, Szabo A (1982a) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  Google Scholar 

  • Lipari G, Szabo A (1982b) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559–4570

    Article  Google Scholar 

  • Liu YJ, Zhao DQ, Altman R, Jardetzky O (1992) A systematic comparison of 3 structure determination methods from NMR data—dependence upon quality and quantity of data. J Biomol NMR 2:373–388

    Article  Google Scholar 

  • Mandel AM, Akke M, Palmer AG (1995) Backbone dynamics of Escherichia coli ribonuclease HI—correlations with structure and function in an active enzyme. J Mol Biol 246:144–163

    Article  Google Scholar 

  • Mayor U, Johnson CM, Daggett V, Fersht AR (2000) Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc Natl Acad Sci USA 97:13518–13522

    Article  ADS  Google Scholar 

  • Mayor U, Guydosh NR, Johnson CM, Grossmann JG, Sato S, Jas GS, Freund SM, Alonso DO, Daggett V, Fersht AR (2003) The complete folding pathway of a protein from nanoseconds to microseconds. Nature 421:863–867

    Article  ADS  Google Scholar 

  • Millet O, Muhandiram DR, Skrynnikov NR, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in (13)C-labeled and fractionally (2)H-enriched proteins in solution. J Am Chem Soc 124:6439–6448

    Article  Google Scholar 

  • Miyamoto S, Kollman PA (1992) Settle—an analytical version of the shake and rattle algorithm for rigid water models. J Comput Chem 13:952–962

    Article  Google Scholar 

  • Muhandiram DR, Yamazaki T, Sykes BD, Kay LE (1995) Measurement of H-2 T-1 and T-1p relaxation-times in uniformly C-13-labeled and fractionally H-2-labeled proteins in solution. J Am Chem Soc 117:11536–11544

    Article  Google Scholar 

  • Neidhard FC, Bloch PL, Smith DF (1974) Culture medium for enterobacteria. J Bacteriol 119:736–747

    Google Scholar 

  • Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Stereospecific nuclear magnetic-resonance assignments of the methyl-groups of valine and leucine in the DNA-binding domain of the 434-repressor by biosynthetically directed fractional C-13 labeling. Biochemistry 28:7510–7516

    Article  Google Scholar 

  • Neuhaus D, Williamson MP (2000) The nuclear overhauser effect in structural and conformational analysis Wiley-VCH

  • Pardi A, Wagner G, Wuthrich K (1983) Protein Conformation and proton NMR chemical-shifts. Eur J Biochem 137:445–454

    Article  Google Scholar 

  • Philippopoulos M, Lim C (1995) Molecular dynamics simulation of E. coli ribonuclease H1 in solution: correlation with NMR and X-ray data and insights into biological function. J Mol Biol 254:771–792

    Article  Google Scholar 

  • Philippopoulos M, Mandel AM, Palmer AG 3rd, Lim C (1997) Accuracy and precision of NMR relaxation experiments and MD simulations for characterizing protein dynamics. Proteins 28:481–493

    Article  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gradient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J Biomol NMR 2:661–665

    Article  Google Scholar 

  • Religa TL, Markson JS, Mayor U, Freund SM, Fersht AR (2005) Solution structure of a protein denatured state and folding intermediate. Nature 437:1053–1056

    Article  ADS  Google Scholar 

  • Renner C, Schleicher M, Moroder L, Holak TA (2002) Practical aspects of the 2D N-15–{H-1}-NOE experiment. J Biomol NMR 23:23–33

    Article  Google Scholar 

  • Riley KF, Hobson MP, Bence SJ (2000) Mathematical methods for physics and engineering. A comprehensive guide. Cambridge University Press, Cambridge

    Google Scholar 

  • Santiveri CM, Perez-Canadillas JM, Vadivelu MK, Allen MD, Rutherford TJ, Watkins NA, Bycroft M (2004) NMR structure of the alpha-hemoglobin stabilizing protein: insights into conformational heterogeneity and binding. J Biol Chem 279:34963–34970

    Article  Google Scholar 

  • Schwieters CD, Clore GM (2007) A physical picture of atomic motions within the Dickerson DNA dodecamer in solution derived from joint ensemble refinement against NMR and large-angle X-ray scattering data. Biochemistry 46:1152–1166

    Article  Google Scholar 

  • Skrynnikov NR, Millet O, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins. 2. Spectral density mapping and identification of nanosecond time-scale side-chain motions. J Am Chem Soc 124:6449–6460

    Article  Google Scholar 

  • Smith JL, Hendrickson WA, Honzatko RB, Sheriff S (1984) Discrete disorder in protein crystals. Acta Crystallogr A 40:C51–C51

    Google Scholar 

  • Smith JL, Hendrickson WA, Honzatko RB, Sheriff S (1986) Structural heterogeneity in protein crystals. Biochemistry 25:5018–5027

    Article  Google Scholar 

  • Smith LJ, Bolin KA, Schwalbe H, MacArthur MW, Thornton JM, Dobson CM (1996) Analysis of main chain torsion angles in proteins: prediction of NMR coupling constants for native and random coil conformations. J Mol Biol 255:494–506

    Article  Google Scholar 

  • Snyder DA, Bhattacharya A, Huang YPJ, Montelione GT (2005) Assessing precision and accuracy of protein structures derived from NMR data. Proteins 59:655–661

    Article  Google Scholar 

  • Sorin EJ, Pande VS (2005) Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys J 88:2472–2493

    Article  Google Scholar 

  • Spronk CA, Nabuurs SB, Bonvin AM, Krieger E, Vuister GW, Vriend G (2003) The precision of NMR structure ensembles revisited. J Biomol NMR 25:225–234

    Article  Google Scholar 

  • Stollar EJ, Mayor U, Lovell SC, Federici L, Freund SM, Fersht AR, Luisi BF (2003) Crystal structures of engrailed homeodomain mutants: implications for stability and dynamics. J Biol Chem 278:43699–43708

    Article  Google Scholar 

  • Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278:1111–1114

    Article  ADS  Google Scholar 

  • Tucker-Kellogg L, Rould MA, Chambers KA, Ades SE, Sauer RT, Pabo CO (1997) Engrailed (Gln50 → Lys) homeodomain-DNA complex at 1.9 A resolution: structural basis for enhanced affinity and altered specificity. Structure 5:1047–1054

    Article  Google Scholar 

  • Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) Gromacs: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • Vuister GW, Bax A (1993) Quantitative J correlation—a new approach for measuring homonuclear 3-bond J(H(N)H(Alpha) coupling-constants in N-15-enriched proteins. J Am Chem Soc 115:7772–7777

    Article  Google Scholar 

  • Wang AC, Bax A (1996) Determination of the backbone dihedral angles phi in human ubiquitin from reparametrized empirical Karplus equations. J Am Chem Soc 118:2483–2494

    Article  Google Scholar 

  • Wagner G, Hyberts SG, Havel TF (1992) NMR structure determination in solution: a critique and comparison with X-ray crystallography. Annu Rev Biophys Biomol Struct 21:167–198

    Article  Google Scholar 

  • Wuthrich K (1986) NMR of proteins and nucleic acids. Wiley

  • Zhang XJ, Wozniak JA, Matthews BW (1995) Protein flexibility and adaptability seen in 25 crystal forms of T4 lysozyme. J Mol Biol 250:527–552

    Article  Google Scholar 

  • Zhang Q, Stelzer AC, Fisher CK, Al-Hashimi HM (2007) Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature 450:1263–1267

    Article  ADS  Google Scholar 

  • Zhao X, Huang XR, Sun CC (2006) Molecular dynamics analysis of the engrailed homeodomain-DNA recognition. J Struct Biol 155:426–437

    Article  Google Scholar 

  • Zweckstetter M, Bax A (2000) Prediction of sterically induced alignment in a dilute liquid crystalline phase: Aid to protein structure determination by NMR. J Am Chem Soc 122:3791–3792

    Article  Google Scholar 

Download references

Acknowledgments

T.L.R. was supported by the Medical Research Council and Trinity College. Alan R. Fersht and Stefan M. V. Freund are thanked for their support and encouragement as well as their reading the manuscript and helpful comments. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz L. Religa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Religa, T.L. Comparison of multiple crystal structures with NMR data for engrailed homeodomain. J Biomol NMR 40, 189–202 (2008). https://doi.org/10.1007/s10858-008-9223-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-008-9223-9

Keywords

Navigation