Skip to main content
Log in

An automated assignment-free Bayesian approach for accurately identifying proton contacts from NOESY data

  • OriginalPaper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The identification of proton contacts from NOE spectra remains the major bottleneck in NMR protein structure calculations. We describe an automated assignment-free system for deriving proton contact probabilities from NOESY peak lists that can be viewed as a quantitative extension of manual assignment techniques. Rather than assigning contacts to NOESY crosspeaks, a rigorous Bayesian methodology is used to transform initial proton contact probabilities derived from a set of 2992 protein structures into posterior probabilities using the observed crosspeaks as evidence. Given a target protein, the Bayesian approach is used to derive probabilities for all possible proton contacts. We evaluated the accuracy of this approach at predicting proton contacts on 60 15N separated NOESY and 13C separated NOESY datasets simulated from experimentally determined NMR structures and compared it to CYANA, an established method for proton constraint assignment. On average, at the highest confidence level, our method accurately identifies 3.16/3.17 long range contacts per residue and 12.11/12.18 interresidue proton contacts per residue. These accuracies represent a significant increase over the performance of CYANA on the same data set. On a difficult real dataset that is publicly available, the coverage is lower but our method retains its advantage in accuracy over CANDID/CYANA. The algorithm is publicly available via the Protinfo NMR webserver http://protinfo.compbio.washington.edu/protinfo_nmr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey-Kellogg C., Widge A., Kelley J.J., Berardi M.J., Bushweller J.H., Donald B.R. (2000). J. Comput. Biol. 7: 537–558

    Article  Google Scholar 

  • Berman H., Henrick K., Nakamura H. (2003). Nat. Struct. Biol. 10: 980

    Article  Google Scholar 

  • Grishaev A., Llinas M. (2002). J. Biomol. NMR 24: 203–213

    Article  Google Scholar 

  • Grishaev A., Llinas M. (2004). J. Biomol. NMR 28: 1–10

    Article  Google Scholar 

  • Guntert P. (2004). Methods Mol. Biol. 278: 353–378

    Google Scholar 

  • Herrmann T., Guntert P., Wuthrich K. (2002). J. Mol. Biol. 319: 209–227

    Article  Google Scholar 

  • Huang Y.J., Moseley H.N., Baran M.C., Arrowsmith C., Powers R., Tejero R., Szyperski T., Montelione G.T. (2005). Methods Enzymol. 394: 111–141

    Article  Google Scholar 

  • Hung L.H., Ngan S.C., Liu T., Samudrala R. (2005). Nucl. Acids Res. 33: W77–80

    Article  Google Scholar 

  • Hung L.H.. and Samudrala R. (2006) submitted

  • Hung L.H., Samudrala R. (2003a). Protein Sci. 12: 288–295

    Article  Google Scholar 

  • Hung L.H., Samudrala R. (2003b). Nucl. Acids Res. 31: 3296–3299

    Article  Google Scholar 

  • Li W., Zhang Y., Kihara D., Huang Y.J., Zheng D., Montelione G.T., Kolinski A., Skolnick J. (2003). Proteins 53: 290–306

    Article  Google Scholar 

  • Linge J.P., O’Donoghue S.I., Nilges M. (2001). Methods Enzymol. 339: 71–90

    Article  Google Scholar 

  • Mumenthaler C., Guntert P., Braun W., Wuthrich K. (1997). J. Biomol. NMR 10: 351–362

    Article  Google Scholar 

  • Nilges M., Macias M.J., O’Donoghue S.I., Oschkinat H. (1997). J. Mol. Biol. 269: 408–422

    Article  Google Scholar 

  • Rieping W., Habeck M., Nilges M. (2005). Science 309: 303–306

    Article  ADS  Google Scholar 

  • Rohl C.A., Baker D. (2002). J. Am. Chem. Soc. 124: 2723–2729

    Article  Google Scholar 

  • Seavey B.R., Farr E.A., Westler W.M., Markley J.L. (1991). J. Biomol. NMR 1: 217–36

    Article  Google Scholar 

  • Vinarov D.A., Lytle B.L., Peterson F.C., Tyler E.M., Volkman B.F., Markley J.L. (2004). Nat. Methods 1: 149–153

    Article  Google Scholar 

  • Wand A.J., Nelson S.J. (1991). Biophys. J. 59: 1101–1112

    Article  Google Scholar 

  • Wang G., Dunbrack R.L. Jr. (2003). Bioinformatics 19: 1589–1591

    Article  Google Scholar 

  • Word J.M., Lovell S.C., Richardson J.S., Richardson D.C. (1999). J. Mol. Biol. 285: 1735–1747

    Article  Google Scholar 

  • Wuthrich K. (1986) NMR of Proteins and Nucleic Acids, John Wiley and Sons, Inc

Download references

Acknowledgements

This work was supported in part by a Searle Scholar Award, a NSF CAREER award (IIS-0448502), NSF grant DBI-0217241, and NIH grant GM068152-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Samudrala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hung, LH., Samudrala, R. An automated assignment-free Bayesian approach for accurately identifying proton contacts from NOESY data. J Biomol NMR 36, 189–198 (2006). https://doi.org/10.1007/s10858-006-9082-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9082-1

Keywords

Navigation