Skip to main content
Log in

Determination of the residue-specific 15N CSA tensor principal components using multiple alignment media

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The individual components of the backbone 15N CSA tensor, σ11, σ22, σ33, and the orientation of σ11 relative to the NH bond described by the angle β have been determined for uniformly labeled 15N, 13C ubiquitin from partial alignment in phospholipid bicelles, Pf1 phage, and poly(ethylene glycol) by measuring the residue-specific residual dipolar couplings and chemical shift deviations. No strong correlation between any of the CSA tensor components is observed with any single structural feature. However, the experimentally determined tensor components agree with the previously determined average CSA principal components [Cornilescu and Bax (2000) J. Am. Chem. Soc. 122, 10143–10154]. Significant deviations from the averages coincide with residues in β-strand or extended regions, while α-helical residue tensor components cluster close to the average values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Barrientos L.G., Dolan C., Gronenborn A.M. (2000) J. Biomol. NMR 16: 329–337

    Article  Google Scholar 

  • Bax A., Grishaev A. (2005) Curr. Opin. Struct. Biol. 15: 563–570

    Article  Google Scholar 

  • Braun D., Wider G., Wuthrich K. (1994) J. Am. Chem. Soc. 116: 8466–8469

    Article  Google Scholar 

  • Brutscher B., Skrynnikov N.R., Bremi T., Bruschweiler R., Ernst R.R. (1998) J. Mag. Resonance 130: 346–351

    Article  ADS  Google Scholar 

  • Case D.A. (1998) Curr. Opin. Struct. Biol. 8: 624–630

    Article  Google Scholar 

  • Chiarparin E., Pelupessy P., Ghose R., Bodenhausen G. (2000) J. Am. Chem. Soc. 122: 1758–1761

    Article  Google Scholar 

  • Cornilescu G., Bax A. (2000) J. Am. Chem. Soc. 122: 10143–10154

    Article  Google Scholar 

  • Cornilescu G., Delaglio F., Bax A. (1999) J. Biomol. NMR 13: 289–302

    Article  Google Scholar 

  • Cornilescu G., Marquardt J.L., Ottiger M., Bax A. (1998) J. Am. Chem. Soc. 120: 6836–6837

    Article  Google Scholar 

  • De Alba E., Tjandra N. (2002) Prog. Nuclear Mag. Resonance Spectrosc. 40: 175–197

    Article  Google Scholar 

  • Delaglio F., Grzesiek S., Vuister G.W., Zhu G., Pfeifer J., Bax A. (1995) J. Biomol. NMR 6: 277–293

    Article  Google Scholar 

  • Feng X., Eden M., Brinkmann A., Luthman H., Eriksson L., Graslund A., Antzutkin O.N., Levitt M.H. (1997) J. Am. Chem. Soc. 119: 12006–12007

    Article  Google Scholar 

  • Fischer M.W.F., Majumdar A., Zuiderweg E.R.P. (1998a) Prog. Nuclear Mag. Resonance Spectrosc. 33: 207–272

    Article  Google Scholar 

  • Fischer M.W.F., Zeng L., Majumdar A., Zuiderweg E.R.P. (1998b) Proc. Nat. Acad. Sci. USA 95: 8016–8019

    Article  ADS  Google Scholar 

  • Fu R.Q., Cross T.A. (1999) Ann. Rev. Biophys. Biomol. Struct. 28: 235–268

    Article  Google Scholar 

  • Fushman D., Tjandra N., Cowburn D. (1998) J. Am. Chem. Soc. 120: 10947–10952

    Article  Google Scholar 

  • Fushman D., Tjandra N., Cowburn D. (1999) J. Am. Chem. Soc. 121: 8577–8582

    Article  Google Scholar 

  • Garrett D.S., Powers R., Gronenborn A.M., Clore G.M. (1991) J. Mag. Resonance 95: 214–220

    Google Scholar 

  • Harbison G.S., Jelinski L.W., Stark R.E., Torchia D.A., Herzfeld J., Griffin R.G. (1984) J. Mag. Resonance 60: 79–82

    Google Scholar 

  • Hartzell C.J., Whitfield M., Oas T.G., Drobny G.P. (1987) J. Am. Chem. Soc. 109: 5966–5969

    Article  Google Scholar 

  • Hiyama Y., Niu C.H., Silverton J.V., Bavoso A., Torchia D.A. (1988) J. Am. Chem. Soc. 110: 2378–2383

    Article  Google Scholar 

  • Ishii Y., Markus M.A., Tycko R. (2001) J. Biomol. NMR 21: 141–151

    Article  Google Scholar 

  • Ishii Y., Tycko R. (2000) J. Am. Chem. Soc. 122: 1443–1455

    Article  Google Scholar 

  • Kabsch W., Sander C. (1983) Biopolymers 22: 2577–2637

    Article  Google Scholar 

  • Ketchem R.R., Lee K.C., Huo S., Cross T.A. (1996) J. Biomol. NMR 8: 1–14

    Article  Google Scholar 

  • Koradi, R., Billeter, M. and Wuthrich, K. (1996) J. Mol. Graphics, 14, 51–55

    Google Scholar 

  • Kroenke C.D., Rance M., Palmer A.G. (1999) J. Am. Chem. Soc. 121: 10119–10125

    Article  Google Scholar 

  • Le H.B., Oldfield E. (1994) Correlation between N-15 NMR Chemical-Shifts in Proteins and Secondary Structure. J. Biomol. NMR 4: 341–348

    Article  Google Scholar 

  • Lienin S.F., Bremi T., Brutscher B., Bruschweiler R., Ernst R.R. (1998) J. Am. Chem. Soc. 120: 9870–9879

    Article  Google Scholar 

  • Lipsitz R.S., Tjandra N. (2001) J. Am. Chem. Soc. 123: 11065–11066

    Article  Google Scholar 

  • Long H.W., Tycko R. (1998) J. Am. Chem. Soc. 120: 7039–7048

    Article  Google Scholar 

  • Lumsden M.D., Wasylishen R.E., Eichele K., Schindler M., Penner G.H., Power W.P., Curtis R.D. (1994) J. Am. Chem. Soc. 116: 1403–1413

    Article  Google Scholar 

  • Mai W., Hu W., Wang C., Cross T.A. (1993) Protein Sci. 2: 532–542

    Article  Google Scholar 

  • Marassi F.M., Ma C., Gesell J.J., Opella S.J. (1999) Appl. Mag. Resonance 17: 433–447

    Article  Google Scholar 

  • Marassi F.M., Opella S.J. (1998) Curr. Opin. Struct. Biol. 8: 640–648

    Article  Google Scholar 

  • Oas T.G., Hartzell C.J., Dahlquist F.W., Drobny G.P. (1987) J. Am. Chem. Soc. 109: 5962–5966

    Article  Google Scholar 

  • Oldfield E. (1995) J. Biomol. NMR 5: 217–225

    Article  Google Scholar 

  • Ottiger M., Delaglio F., Bax A. (1998) J. Mag. Resonance 131: 373–378

    Article  ADS  Google Scholar 

  • Palmer A.G., Williams J., Mcdermott A. (1996) J. Phys. Chem. 100: 13293–13310

    Article  Google Scholar 

  • Pervushin K., Riek R., Wider G., Wuthrich K. (1997) Proc. Nat. Acad. Sci. USA 94: 12366–12371

    Article  ADS  Google Scholar 

  • Prestegard J.H., Bougault C.M., Kishore A.I. (2004) Chem. Rev. 104: 3519–3540

    Article  Google Scholar 

  • Reif B., Hennig M., Griesinger C. (1997) Science 276: 1230–1233

    Article  Google Scholar 

  • Reif B., Steinhagen H., Junker B., Reggelin M., Griesinger C. (1998) Angewandte Chemie-International Edition 37: 1903–1906

    Article  Google Scholar 

  • Ruckert M., Otting G. (2000) J. Am. Chem. Soc. 122: 7793–7797

    Article  Google Scholar 

  • Salzmann M., Wider G., Pervushin K., Senn H., Wuthrich K. (1999) J. Am. Chem. Soc. 121: 844–848

    Article  Google Scholar 

  • Scheurer C., Skrynnikov N.R., Lienin S.F., Straus S.K., Bruschweiler R., Ernst R.R. (1999) J. Am. Chem. Soc. 121: 4242–4251

    Article  Google Scholar 

  • Sitkoff D., Case D.A. (1998) Theories of chemical shift anisotropies in proteins and nucleic acids. Progress in Nuclear Magnetic Resonance Spectroscopy 32: 165–190

    Article  Google Scholar 

  • Tjandra N., Bax A. (1997) J. Am. Chem. Soc. 119: 8076–8082

    Article  Google Scholar 

  • Tjandra N., Feller S.E., Pastor R.W., Bax A. (1995) J. Am. Chem. Soc. 117: 12562–12566

    Article  Google Scholar 

  • Tjandra N., Szabo A., Bax A. (1996) J. Am. Chem. Soc. 118: 6986–6991

    Article  Google Scholar 

  • Vijaykumar S., Bugg C.E., Cook W.J. (1987) J. Mol. Biol. 194: 531–544

    Article  Google Scholar 

  • Wishart D.S., Sykes B.D. (1994) J. Biomol. NMR 4: 171–180

    Article  Google Scholar 

  • Wishart D.S., Sykes B.D., Richards F.M. (1992) Biochemistry 31: 1647–1651

    Article  Google Scholar 

  • Xu X.P., Case D.A. (2002) Biopolymers 65: 408–423

    Article  Google Scholar 

  • Yang D.W., Kay L.E. (1998) J. Am. Chem. Soc. 120: 9880–9887

    Article  Google Scholar 

  • Yang D.W., Kay L.E. (1999) J. Am. Chem. Soc. 121: 2571–2575

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the NIH, National Heart, Lung, and Blood Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Tjandra.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, R.A., Tjandra, N. Determination of the residue-specific 15N CSA tensor principal components using multiple alignment media. J Biomol NMR 35, 249–259 (2006). https://doi.org/10.1007/s10858-006-9037-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-9037-6

Keywords