Skip to main content
Log in

Comparison of Different Torsion Angle Approaches for NMR Structure Determination

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

A new procedure for NMR structure determination, based on the Internal Coordinate Molecular Dynamics (ICMD) approach, is presented. The method finds biopolymer conformations that satisfy usual NMR-derived restraints by using high temperature dynamics in torsion angle space. A variable target function algorithm gradually increases the number of NOE-based restraints applied, with the treatment of ambiguous and floating restraints included. This soft procedure allows combining artificially high temperature with a general purpose force-field including Coulombic and Lennard-Jones non-bonded interactions, which improves the quality of the ensemble of conformations obtained in the gas-phase. The new method is compared to existing algorithms by using the structures of eight ribosomal proteins earlier obtained with state-of-the-art procedures and included into the RECOORD database [Nederveen, A., Doreleijers, J., Vranken, W., Miller, Z., Spronk, C., Nabuurs, S., Guntert, P., Livny, M., Markley, M., Nilges, M., Ulrich, E., Kaptein, R. and Bonvin, A.M. (2005) Proteins, 59, 662–672]. For the majority of tested proteins, the ICMD algorithm shows similar convergence and somewhat better quality Z scores for the ϕ, ψ distributions. The new method is more computationally demanding although the overall load is reasonable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Abagyan A. Mazur (1989) J. Biomol. Struct. Dyn. 6 833–845

    Google Scholar 

  • J. Aramini Y. Huang J. Cort S. Goldsmith-Fischman R. Xiao L. Shih C. Ho J. Liu B. Rost B. Honig M. Kennedy T. Acton G. Montelione (2003) Protein Sci. 12 2823–2830 Occurrence Handle10.1110/ps.03359003

    Article  Google Scholar 

  • H. Berendsen J. Postma W. Gunsteren Particlevan A. DiNola (1984) J. Chem. Phys. 81 3684–3690 Occurrence Handle1984JChPh..81.3684B Occurrence Handle10.1063/1.448118

    Article  ADS  Google Scholar 

  • W. Braun N. Go (1985) J. Mol. Biol. 186 611–626 Occurrence Handle10.1016/0022-2836(85)90134-2

    Article  Google Scholar 

  • A. Brunger P. Adams G. Clore W. DeLano P. Gros R. Grosse-Kunstleve J. Jiang J. Kuszewski M. Nilges N. Pannu R. Read L. Rice T. Simonson G. Warren (1998a) Acta Crystallogr. D Biol. Crystallogr. 54 905–921

    Google Scholar 

  • A. Brunger A. PD G. Clore W. DeLano P. Gross R. Grosse-Kunstleve J. Jiang J. Kuszewski M. Nilges N. Pannu R. Read L. Rice T. Simonson G. Warren (1998b) Acta Crystallogr. D Biol. Crystallogr. 54 905–921

    Google Scholar 

  • J. Chao J. Williamson (2004) Structure 12 1165–1176 Occurrence Handle10.1016/j.str.2004.04.023

    Article  Google Scholar 

  • Y. Chen M. Bycroft K. Wong (2003) Biochemistry 42 2857–2865

    Google Scholar 

  • W.D. Cornell P. Cieplak C.I. Bayly I.R. Gould K.M. Merz D.M. Ferguson D.C. Spellmeyer T. Fox J.W. Caldwell P.A. Kollman (1995) J. Am. Chem. Soc. 117 5179–5197 Occurrence Handle10.1021/ja00124a002

    Article  Google Scholar 

  • G. Cornilescu F. Delaglio A. Bax (1999) J. Biomol. NMR 13 289–302 Occurrence Handle10.1023/A:1008392405740

    Article  Google Scholar 

  • J. Doreleijers M. Raves T. Rullmann R. Kaptein (1999) J. Biomol. NMR 14 123–132 Occurrence Handle10.1023/A:1008335423527

    Article  Google Scholar 

  • H. Fan A. Mark (2003) Proteins 53 111–120 Occurrence Handle10.1002/prot.10496

    Article  Google Scholar 

  • M. Fossi H. Oschkinat M. Nilges L. Ball (2005) J. Magn. Reson. 175 92–102 Occurrence Handle2005JMagR.175...92F Occurrence Handle10.1016/j.jmr.2005.03.020

    Article  ADS  Google Scholar 

  • P. Güntert C. Mumenthaler K. Wütrich (1997) J. Mol. Biol. 273 283–298 Occurrence Handle10.1006/jmbi.1997.1284

    Article  Google Scholar 

  • M. Helgstrand A. Rak P. Allard N. Davydova M. Garber T. Hard (1999) J. Mol. Biol. 292 1071–1081 Occurrence Handle10.1006/jmbi.1999.3122

    Article  Google Scholar 

  • T. Herrmann P. Güntert K. Wüthrich (2002) J. Mol. Biol. 319 209–227 Occurrence Handle10.1016/S0022-2836(02)00241-3

    Article  Google Scholar 

  • C. Herve du Penhoat H. Atreya Y. Shen G. Liu T. Acton R. Xiao Z. Li D. Murray G. Montelione T. Szyperski (2004) Prot. Sci. 13 1407–1416

    Google Scholar 

  • R. Hooft G. Vriend C. Sander E. Abola (1996) Nature 381 272–272 Occurrence Handle1996Natur.381..272H Occurrence Handle10.1038/381272a0

    Article  ADS  Google Scholar 

  • A. Jabs M. Weiss R. Hilgenfeld (1999) J. Mol. Biol. 286 291–304 Occurrence Handle10.1006/jmbi.1998.2459

    Article  Google Scholar 

  • A. Jain N. Vaidehi G. Rodriguez (1993) J. Comput. Phys. 106 258–268 Occurrence Handle1993JCoPh.106..258J

    ADS  Google Scholar 

  • J. Kordel D. Pearlman W. Chazin (1997) J. Biomol. NMR 10 231–243

    Google Scholar 

  • S.A. Kozin G. Bertho A.K. Mazur H. Rabesona J.P. Girault T. Haertle M. Takahashi P. Debey G.H. Hoa (2001) J. Biol. Chem. 276 46364–46370 Occurrence Handle10.1074/jbc.M108014200

    Article  Google Scholar 

  • J. Kwasigroch J. Chomilier J. Mornon (1997) J. Mol. Biol. 259 855–872

    Google Scholar 

  • R. Laskowski M. MacArthur D. Moss J. Thornton (1993) J. Appl. Cryst. 26 283–291 Occurrence Handle10.1107/S0021889892009944

    Article  Google Scholar 

  • M. Levitt M. Hirshberg R. Sharon K. Laidig V. Daggett (1997) J. Phys. Chem. 101 5051–5061

    Google Scholar 

  • J. Linge M. Nilges (1999) J. Biomol. NMR 13 51–59 Occurrence Handle10.1023/A:1008365802830

    Article  Google Scholar 

  • J. Linge M. Williams C. Spronk A. Bonvin M. Nilges (2003) Proteins 50 496–506 Occurrence Handle10.1002/prot.10299

    Article  Google Scholar 

  • M. Lu T. Steitz (2000) Proc. Natl. Acad. Sci. USA 97 2023–2028 Occurrence Handle2000PNAS...97.2023L

    ADS  Google Scholar 

  • H. Mao J. Willamson (1999) J. Mol. Biol. 292 345–359 Occurrence Handle10.1006/jmbi.1999.3044

    Article  Google Scholar 

  • M. Markus A. Hinck S. Huang D. Draper D. Torchia (1997) Nat. Struct. Biol. 4 70–77 Occurrence Handle10.1038/nsb0197-70

    Article  Google Scholar 

  • A. Mazur R. Abagyan (1989) J. Biomol. Struct. Dyn. 6 815–832

    Google Scholar 

  • A.K. Mazur (1997) J. Comput. Chem. 18 1354–1364 Occurrence Handle10.1002/(SICI)1096-987X(199708)18:11<1354::AID-JCC3>3.0.CO;2-K

    Article  Google Scholar 

  • A.K. Mazur (1998a) J. Am. Chem. Soc. 120 10928–10937 Occurrence Handle10.1021/ja981498w

    Article  Google Scholar 

  • A.K. Mazur (1998b) J. Phys. Chem. B 102 473–479 Occurrence Handle10.1021/jp972381h

    Article  Google Scholar 

  • A.K. Mazur (1999) J. Chem. Phys. 111 1407–1414 Occurrence Handle1999JChPh.111.1407M Occurrence Handle10.1063/1.479399

    Article  ADS  Google Scholar 

  • Mazur, A.K. (2001) In Computational Biochemistry and Biophysics, Becker, O.M., MacKerell, A.D. Jr., Roux, B., Watanabe, M. (Eds.), Marcel Dekker, New York, pp. 115–131

  • A.K. Mazur (2002) J. Am. Chem. Soc. 124 14707–14715 Occurrence Handle10.1021/ja012706e

    Article  Google Scholar 

  • E. Miclet F. Duffieux J. Lallemand V. Stoven (2003) J. Biomol. NMR 25 249–250 Occurrence Handle10.1023/A:1022811124329

    Article  Google Scholar 

  • A. Nederveen J. Doreleijers W. Vranken Z. Miller C. Spronk S. Nabuurs P. Guntert M. Livny J. Markley M. Nilges E. Ulrich R. Kaptein A.M. Bonvin (2005) Proteins 59 662–672 Occurrence Handle10.1002/prot.20408

    Article  Google Scholar 

  • M. Nilges (1993) Proteins 17 297–309 Occurrence Handle10.1002/prot.340170307

    Article  Google Scholar 

  • A. Ohman A. Rak M. Dontsova M. Garber T. Hard (2003) J. Biomol. NMR 26 131–137

    Google Scholar 

  • S. Raibaud I. Lebars M. Guillier C. Chiaruttini F. Bontems A. Rak M. Garber F. Allemand M. Springer F. Dardel (2002) J. Mol. Biol. 323 143–151 Occurrence Handle10.1016/S0022-2836(02)00921-X

    Article  Google Scholar 

  • C. Schwieters G. Clore (2001) J. Magn. Reson. 152 288–302 Occurrence Handle2001JMagR.152..288S Occurrence Handle10.1006/jmre.2001.2413

    Article  ADS  Google Scholar 

  • E. Stein L. Rice A. Brunger (1997) J. Magn. Reson. 124 154–164 Occurrence Handle10.1006/jmre.1996.1027

    Article  Google Scholar 

  • M. Stoldt J. Woehnert M. Goerlach L. Brown (1998) EMBO J. 17 6377–6384 Occurrence Handle10.1093/emboj/17.21.6377

    Article  Google Scholar 

  • M. Stoldt J. Wohnert O. Ohlenschlager M. Gorlach L. Brown (1999) EMBO J. 18 6508–6521 Occurrence Handle10.1093/emboj/18.22.6508

    Article  Google Scholar 

  • Zirah, S., Kozin, S.A., Mazur, A., Blond, A., Cheminant, M., S’egalas-Milazzo, I., Debey, P. and Rebuffat, S. (2006) J. Biol. Chem., in press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thérèse E. Malliavin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardiaux, B., Malliavin, T.E., Nilges, M. et al. Comparison of Different Torsion Angle Approaches for NMR Structure Determination. J Biomol NMR 34, 153–166 (2006). https://doi.org/10.1007/s10858-006-6889-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-006-6889-8

Key words

Navigation