Skip to main content
Log in

Structural Basis for Non-Covalent Interaction Between Ubiquitin and the Ubiquitin Conjugating Enzyme Variant Human MMS2

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Modification of proteins by post-translational covalent attachment of a single, or chain, of ubiquitin molecules serves as a signaling mechanism for a number of regulatory functions in eukaryotic cells. For example, proteins tagged with lysine-63 linked polyubiquitin chains are involved in error-free DNA repair. The catalysis of lysine-63 linked polyubiquitin chains involves the sequential activity of three enzymes (E1, E2, and E3) that ultimately transfer a ubiquitin thiolester intermediate to a protein target. The E2 responsible for catalysis of lysine-63 linked polyubiquitination is a protein heterodimer consisting of a canonical E2 known as Ubc13, and an E2-like protein, or ubiquitin conjugating enzyme variant (UEV), known as Mms2. We have determined the solution structure of the complex formed by human Mms2 and ubiquitin using high resolution, solution state nuclear magnetic resonance (NMR) spectroscopy. The structure of the Mms2–Ub complex provides important insights into the molecular basis underlying the catalysis of lysine-63 linked polyubiquitin chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ub:

ubiquitin

E1:

ubiquitin activating enzyme

E2:

ubiquitin conjugating enzyme

E3:

ubiquitin ligase

UEV:

ubiquitin conjugating enzyme variant

CUE:

similar to yeast protein Cue1p

UBA:

ubiquitin associated domain

UIM:

ubiquitin interacting motif

NMR:

nuclear magnetic resonance

ITC:

isothermal titration calorimetry

IPTG:

isopropyl ß-D-thiogalactopyranoside

NOE:

nuclear Overhauser effect

References

  • A. Bax G.M. Clore A.M. Gronenborn (1990) J. Magn. Reson. 88 425–431

    Google Scholar 

  • Y. Ben-Neriah (2002) Nat. Immunol. 3 20–26 Occurrence Handle10.1038/ni0102-20

    Article  Google Scholar 

  • V. Bernier-Villamor D.A. Sampson M.J. Matunis C.D. Lima (2002) Cell 108 345–356

    Google Scholar 

  • S. Broomfield B.L. Chow W. Xiao (1998) Proc. Natl. Acad. Sci. USA 95 5678–5683 Occurrence Handle10.1073/pnas.95.10.5678 Occurrence Handle1998PNAS...95.5678B

    Article  ADS  Google Scholar 

  • J. Cavanagh A.G. Palmer P.E. Wright M. Rance (1991) J. Magn. Reson. 91 429–436

    Google Scholar 

  • N.L. Chan C.P. Hill (2001) Nat. Struct. Biol. 8 650–652 Occurrence Handle10.1038/90337

    Article  Google Scholar 

  • F. Delaglio S. Grzesiek G.W. Vuister G. Zhu J. Pfeifer A. Bax (1995) J. Biomol. NMR 6 277–293 Occurrence Handle10.1007/BF00197809

    Article  Google Scholar 

  • W.L. DeLano (2002) DeLano Scientific San Carlos CA, USA

    Google Scholar 

  • L. Deng C. Wang E. Spencer L. Yang A. Braun J. You C. Slaughter C. Pickart Z.J. Chen (2000) Cell 103 351–361 Occurrence Handle10.1016/S0092-8674(00)00126-4

    Article  Google Scholar 

  • C. Dominguez R. Boelens A.M.J.J. Bonvin (2003) J. Am. Chem. Soc. 125 1731–1737

    Google Scholar 

  • K.H. Gardner R. Konrat M.K. Rosen L.E. Kay (1996) J. Biomol. NMR 8 351–356 Occurrence Handle10.1007/BF00410333

    Article  Google Scholar 

  • D.S. Garrett Y.J. Seok A. Peterkofsky G.M. Clore A.M. Gronenborn (1997) Biochemistry 36 4393–4398

    Google Scholar 

  • M.H. Glickman A. Ciechanover (2002) Physiol. Rev. 82 373–428

    Google Scholar 

  • Goddard, T. D. and Kneller, D. G. University of California, San Francisco

  • K. Haglund P.P. Fiore ParticleDi I. Dikic (2003) Trends Biochem. Sci. 28 598–603 Occurrence Handle10.1016/j.tibs.2003.09.005

    Article  Google Scholar 

  • L. Hicke (2001) Nat. Rev. Mol. Cell. Biol. 2 195–201 Occurrence Handle10.1038/35056583

    Article  Google Scholar 

  • L. Hicke H.L. Schubert C.P. Hill (2005) Nat. Rev. Mol. Cell. Biol. 6 610–621 Occurrence Handle10.1038/nrm1701

    Article  Google Scholar 

  • C. Hoege B. Pfander G.L. Moldovan G. Pyrowolakis S. Jentsch (2002) Nature 419 135–141 Occurrence Handle10.1038/nature00991 Occurrence Handle2002Natur.419..135H

    Article  ADS  Google Scholar 

  • R.M. Hofmann C.M. Pickart (1999) Cell 96 645–653 Occurrence Handle10.1016/S0092-8674(00)80575-9

    Article  Google Scholar 

  • R.S. Kang C.M. Daniels S.A. Francis S.C. Shih W.J. Salerno L. Hicke I. Radhakrishnan (2003) Cell 113 621–630 Occurrence Handle10.1016/S0092-8674(03)00362-3

    Article  Google Scholar 

  • L.E. Kay M. Ikura R. Tschudin A. Bax (1990) J. Magn. Reson. 89 496–514

    Google Scholar 

  • L.E. Kay P. Keifer T. Saarinen (1992) J. Am. Chem. Soc. 114 10663–10665 Occurrence Handle10.1021/ja00052a088

    Article  Google Scholar 

  • L.E. Kay G.Y. Xu A.U. Singer D.R. Muhandiram J.D. Forman-Kay (1993) J. Magn. Reson. B 101 333–337

    Google Scholar 

  • R.A. Laskowski M.W. MacArthur D.S. Moss J.M. Thorton (1993) J. Appl. Crystallogr. 26 283–290 Occurrence Handle10.1107/S0021889892009944

    Article  Google Scholar 

  • P. Lavigne J.R. Bagu R. Boyko L. Willard C.F. Holmes B.D. Sykes (2000) Protein Sci. 9 252–264

    Google Scholar 

  • T.M. Logan E.T. Olejniczak R.X. Xu S.W. Fesik (1993) J. Biomol. NMR 3 225–231 Occurrence Handle10.1007/BF00178264

    Article  Google Scholar 

  • B.A. Lyons G.T. Montelione (1993) J. Magn. Reson. B 101 206–209

    Google Scholar 

  • S. McKenna J. Hu T. Moraes W. Xiao M.J. Ellison L. Spyracopoulos (2003a) Biochemistry 42 7922–7930 Occurrence Handle10.1021/bi034480t

    Article  Google Scholar 

  • S. McKenna T. Moraes L. Pastushok C. Ptak W. Xiao L. Spyracopoulos M.J. Ellison (2003b) J. Biol. Chem. 278 13151–13158 Occurrence Handle10.1074/jbc.M212353200

    Article  Google Scholar 

  • S. McKenna L. Spyracopoulos T. Moraes L. Pastushok C. Ptak W. Xiao M.J. Ellison (2001) J. Biol. Chem. 276 40120–40126 Occurrence Handle10.1074/jbc.M102858200

    Article  Google Scholar 

  • T. Miura W. Klaus B. Gsell C. Miyamoto H. Senn (1999) J. Mol. Biol. 290 213–228 Occurrence Handle10.1006/jmbi.1999.2859

    Article  Google Scholar 

  • T.F. Moraes R.A. Edwards S. McKenna L. Pastushok W. Xiao J.N. Glover M.J. Ellison (2001) Nat. Struct. Biol. 8 669–673 Occurrence Handle10.1038/90373

    Article  Google Scholar 

  • D.R. Muhandiram L.E. Kay (1994) J. Magn. Reson. Ser. B 103 203–216 Occurrence Handle10.1006/jmrb.1994.1032

    Article  Google Scholar 

  • D. Neri T. Szyperski G. Otting H. Senn K. Wuthrich (1989) Biochemistry 28 7510–7516 Occurrence Handle10.1021/bi00445a003

    Article  Google Scholar 

  • O. Pornillos S.L. Alam R.L. Rich D.G. Myszka D.R. Davis W.I. Sundquist (2002) Embo. J. 21 2397–2406 Occurrence Handle10.1093/emboj/21.10.2397

    Article  Google Scholar 

  • G. Prag S. Misra E.A. Jones R. Ghirlando B.A. Davies B.F. Horazdovsky J.H. Hurley (2003) Cell 113 609–620 Occurrence Handle10.1016/S0092-8674(03)00364-7

    Article  Google Scholar 

  • S. Sambrook E.F. Fritch T. Maniatis (1989) Molecular Cloning: A Laboratory Manual Cold Spring Harbor Laboratory Press New York, NY

    Google Scholar 

  • J.D. Schnell L. Hicke (2003) J. Biol. Chem. 278 35857–35860 Occurrence Handle10.1074/jbc.R300018200

    Article  Google Scholar 

  • C.M. Slupsky C.M. Kay F.C. Reinach L.B. Smillie B.D. Sykes (1995) Biochemistry 34 7365–7375

    Google Scholar 

  • W.I. Sundquist H.L. Schubert B.N. Kelly G.C. Hill J.M. Holton C.P. Hill (2004) Mol. Cell 13 783–789 Occurrence Handle10.1016/S1097-2765(04)00129-7

    Article  Google Scholar 

  • K.A. Swanson R.S. Kang S.D. Stamenova L. Hicke I. Radhakrishnan (2003) Embo. J. 22 4597–4606 Occurrence Handle10.1093/emboj/cdg471

    Article  Google Scholar 

  • C. Tsui A. Raguraj C.M. Pickart (2005) J. Biol. Chem. 280 19829–19835 Occurrence Handle10.1074/jbc.M414060200

    Article  Google Scholar 

  • A.P. VanDemark R.M. Hofmann C. Tsui C.M. Pickart C. Wolberger (2001) Cell 105 711–720 Occurrence Handle10.1016/S0092-8674(01)00387-7

    Article  Google Scholar 

  • G.W. Vuister A. Bax (1992) J. Magn. Reson. 98 428–435

    Google Scholar 

  • C. Wang L. Deng M. Hong G.R. Akkaraju J. Inoue Z.J. Chen (2001) Nature 412 346–351 Occurrence Handle2001Natur.412..346W

    ADS  Google Scholar 

  • M. Wittekind L. Mueller (1993) J. Magn. Reson. B 101 201–205

    Google Scholar 

  • W. Xiao S.L. Lin S. Broomfield B.L. Chow Y.F. Wei (1998) Nucleic Acid Res. 26 3908–3914

    Google Scholar 

  • T. Yamazaki W. Lee C.H. Arrowsmith D.R. Muhandiram L.E. Kay (1994) J. Am. Chem. Soc. 116 11655–11666

    Google Scholar 

  • D.W. Yang Y. Zheng D.J. Liu D.F. Wyss (2004) J. Am. Chem. Soc. 126 3710–3711

    Google Scholar 

  • C. Zwahlen P. Legault S.J.F. Vincent J. Greenblatt R. Konrat L.E. Kay (1997) J. Am. Chem. Soc. 119 6711–6721 Occurrence Handle10.1021/ja970224q

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Spyracopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, M.J., Saltibus, L.F., Hau, D.D. et al. Structural Basis for Non-Covalent Interaction Between Ubiquitin and the Ubiquitin Conjugating Enzyme Variant Human MMS2. J Biomol NMR 34, 89–100 (2006). https://doi.org/10.1007/s10858-005-5583-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-5583-6

Keywords

Navigation