Skip to main content
Log in

Assignment Strategy for Fast Relaxing Signals: Complete Aminoacid Identification in Thulium Substituted Calbindin D9K

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Paramagnetic proteins generally contain regions with diverse relaxation properties. Nuclei in regions far from the metal center may behave like those in diamagnetic proteins, but those closer to the metal experience rapid relaxation with accompanying line broadening. We have used a set of NMR experiments optimized to capture data from these various concentric regions in assigning the signals from a paramagnetic Calbindin D9K derivative in which one of the two calcium ions has been replaced by thulium(III). Normal double- and triple-resonance experiments with 1H detection were used in collecting data from nuclei in the diamagnetic-like region; these approaches identified signals from fewer than 50% of the amino acid residues (those with d>17.5 Å from thulium(III)). Paramagnetism-optimized two-dimensional NMR experiments with 1H detection were used in collecting data from nuclei in the next nearer region (d>15 Å). Standard (d>14 Å) and optimized (d>9 Å) 13C direct-detection experiments were used to capture data from nuclei in the next layer. Finally nuclei closest to the metal were detected by one-dimensional 13C (d>5 Å) and one-dimensional 15N data collection (d>4.2 Å). NMR signals were assigned on the basis of through-bond correlations and, for signals closest to the metal, pseudocontact shifts. The latter were determined from chemical shift differences between assigned signals in thulium(III) and lanthanum(III) derivatives of Calbindin D9K and they were interpreted on the basis of a structural model for the lanthanide-substituted protein. This approach yielded assignments of at least one resonance per amino acid residue, including those in the thulium(III) coordination sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Akke S. Forsén W.J. Chazin (1991) J. Mol. Biol. 220 173–189 Occurrence Handle10.1016/0022-2836(91)90389-N

    Article  Google Scholar 

  • M. Akke S. Forsén W.J. Chazin (1995) J. Mol. Biol. 252 102–121 Occurrence Handle10.1006/jmbi.1995.0478

    Article  Google Scholar 

  • M. Allegrozzi I. Bertini M.B.L. Janik Y.-M. Lee G. Liu C. Luchinat (2000) J. Am. Chem. Soc. 122 4154–4161 Occurrence Handle10.1021/ja993691b

    Article  Google Scholar 

  • F. Arnesano L. Banci I. Bertini I.C. Felli C. Luchinat A.R. Thompsett (2003) J. Am. Chem. Soc. 125 7200–7208 Occurrence Handle10.1021/ja034112c

    Article  Google Scholar 

  • E. Babini I. Bertini F. Capozzi I.C. Felli M. Lelli C. Luchinat (2004) J. Am. Chem. Soc. 126 10496–10497 Occurrence Handle10.1021/ja047573m

    Article  Google Scholar 

  • L. Banci I. Bertini K.L. Bren M.A. Cremonini H.B. Gray C. Luchinat P. Turano (1996) J. Biol. Inorg. Chem. 1 117–126

    Google Scholar 

  • L. Banci I. Bertini G. Gori Savellini A. Romagnoli P. Turano M.A. Cremonini C. Luchinat H.B. Gray (1997) Proteins Struct. Funct. Genet. 29 68–76

    Google Scholar 

  • W. Bermel I. Bertini L. Duma L. Emsley I.C. Felli R. Pierattelli P.R. Vasos (2005a) Angew. Chem. Int. Ed. 44 3089–3092 Occurrence Handle10.1002/anie.200461794

    Article  Google Scholar 

  • W. Bermel I. Bertini I.C. Felli R. Pierattelli P.R. Vasos (2005b) J. Magn. Reson. 172 324–328 Occurrence Handle10.1016/j.jmr.2004.11.005 Occurrence Handle2005JMagR.172..324B

    Article  ADS  Google Scholar 

  • I. Bertini C.J. Carrano C. Luchinat M. Piccioli L. Poggi (2002a) Biochemistry 41 5104–5111 Occurrence Handle10.1021/bi015945n

    Article  Google Scholar 

  • I. Bertini G. Cavallaro M. Cosenza R. Kümmerle C. Luchinat M. Piccioli L. Poggi (2002b) J. Biomol. NMR 23 115–125 Occurrence Handle10.1023/A:1016341507527

    Article  Google Scholar 

  • I. Bertini M.M.J. Couture A. Donaire L.D. Eltis I.C. Felli C. Luchinat M. Piccioli A. Rosato (1996) Eur. J. Biochem. 241 440–452 Occurrence Handle10.1111/j.1432-1033.1996.00440.x

    Article  Google Scholar 

  • I. Bertini A. Donaire B. Jiménez C. Luchinat G. Parigi M. Piccioli L. Poggi (2001a) J. Biomol. NMR 21 85–98 Occurrence Handle10.1023/A:1012422402545

    Article  Google Scholar 

  • I. Bertini L. Duma I.C. Felli M. Fey C. Luchinat R. Pierattelli P.R. Vasos (2004a) Angew. Chem. Int. Ed. 43 2257–2259

    Google Scholar 

  • I. Bertini I.C. Felli R. Kümmerle D. Moskau R. Pierattelli (2004b) J. Am. Chem. Soc. 126 464–465 Occurrence Handle10.1021/ja0357036

    Article  Google Scholar 

  • I. Bertini M.B.L. Janik Y.-M. Lee C. Luchinat A. Rosato (2001b) J. Am. Chem. Soc. 123 4181–4188

    Google Scholar 

  • I. Bertini B. Jiménez M. Piccioli (2005) J. Magn. Reson. 174 125–132 Occurrence Handle10.1016/j.jmr.2005.01.014 Occurrence Handle2005JMagR.174..125B

    Article  ADS  Google Scholar 

  • I. Bertini Y.-M. Lee C. Luchinat M. Piccioli L. Poggi (2001c) ChemBioChem 2 550–558 Occurrence Handle10.1002/1439-7633(20010803)2:7/8<550::AID-CBIC550>3.0.CO;2-T

    Article  Google Scholar 

  • I. Bertini C. Luchinat G. Parigi (2001d) Solution NMR of Paramagnetic Molecules Elsevier Amsterdam

    Google Scholar 

  • B. Bleaney (1972) J. Magn. Reson. 8 91–100

    Google Scholar 

  • G. Bodenhausen D.J. Ruben (1980) Chem. Phys. Lett. 69 185–188 Occurrence Handle10.1016/0009-2614(80)80041-8 Occurrence Handle1980CPL....69..185B

    Article  ADS  Google Scholar 

  • P. Brodin T. Grundstrom T. Hofmann T. Drakenberg E. Thulin S. Forsén (1986) Biochemistry 25 5371–5377 Occurrence Handle10.1021/bi00367a004

    Article  Google Scholar 

  • Caillet-Saguy, C., Delepierre, M., Lecroisey, A., Bertini, I., Piccioli, M. and Turano, P. J. Am. Chem. Soc. in press

  • W.J. Chazin J. Kördel T. Drakenberg E. Thulin P. Brodin T. Grundstrom S. Forsén (1989) Proc. Natl. Acad. Sci. USA 86 2195–2198 Occurrence Handle1989PNAS...86.2195C

    ADS  Google Scholar 

  • H. Déméné P. Tsan P. Gans D. Marion (2000) J. Phys. Chem. B 104 2559–2569

    Google Scholar 

  • A. Donaire B. Jiménez J.M. Moratal Mascarell J.F. Hall S.S. Hasnain (2001) Biochemistry 40 837–846 Occurrence Handle10.1021/bi001971u

    Article  Google Scholar 

  • A. Donaire J. Salgado J.M. Moratal (1998) Biochemistry 37 8659–8673 Occurrence Handle10.1021/bi971974f

    Article  Google Scholar 

  • C. Eccles P. Güntert M. Billeter K. Wüthrich (1991) J. Biomol. NMR 1 111–130 Occurrence Handle10.1007/BF01877224

    Article  Google Scholar 

  • L. Emsley G. Bodenhausen (1992) J. Magn. Reson. 97 135–148

    Google Scholar 

  • I. Gelis N. Katsaros C. Luchinat M. Piccioli L. Poggi (2003) Eur. J. Biochem. 270 600–609 Occurrence Handle10.1046/j.1432-1033.2003.03400.x

    Article  Google Scholar 

  • S. Grzesiek A. Bax (1992) J. Am. Chem. Soc. 114 6291–6293 Occurrence Handle10.1021/ja00042a003

    Article  Google Scholar 

  • J.C. Hus D. Marion M. Blackledge (2000) J. Mol. Biol. 298 927–936 Occurrence Handle10.1006/jmbi.2000.3714

    Article  Google Scholar 

  • C. Johansson P. Brodin T. Grundstrom E. Thulin S. Forsén T. Drakenberg (1990) Eur. J. Biochem. 187 455–460 Occurrence Handle10.1111/j.1432-1033.1990.tb15325.x

    Article  Google Scholar 

  • L.E. Kay M. Ikura R. Tschudin A. Bax (1990) J. Magn. Reson. 89 496–514

    Google Scholar 

  • L.E. Kay D. Marion A. Bax (1989) J. Magn. Reson. 84 72–84

    Google Scholar 

  • J. Kördel N.J. Skelton M. Akke W.J. Chazin (1993) J. Mol. Biol. 231 711–734 Occurrence Handle10.1006/jmbi.1993.1322

    Article  Google Scholar 

  • M. Kostic S.S. Pochapsky T.C. Pochapsky (2002) J. Am. Chem. Soc. 124 9054–9055 Occurrence Handle10.1021/ja0268480

    Article  Google Scholar 

  • R.H. Kretsinger (1980) CRC Crit. Rev. Biochem. 8 119–174

    Google Scholar 

  • R.J. Kurland B.R. McGarvey (1970) J. Magn. Reson. 2 286–301

    Google Scholar 

  • T.E. Machonkin W.M. Westler J.L. Markley (2002) J. Am. Chem. Soc. 124 3204–3205 Occurrence Handle10.1021/ja017733j

    Article  Google Scholar 

  • T.E. Machonkin W.M. Westler J.L. Markley (2004) J. Am. Chem. Soc. 126 5413–5426 Occurrence Handle10.1021/ja037077i

    Article  Google Scholar 

  • A. Malmendal G. Carlström C. Hambraeus T. Drakenberg S. Forsén M. Akke (1998) Biochemistry 37 2586–2595 Occurrence Handle10.1021/bi971798a

    Article  Google Scholar 

  • D. Marion K. Wüthrich (1983) Biochem. Biophys. Res. Commun. 113 967–974 Occurrence Handle10.1016/0006-291X(83)91093-8

    Article  Google Scholar 

  • H.M. McConnell R.E. Robertson (1958) J. Chem. Phys. 29 1361–1365

    Google Scholar 

  • A.F. Miller K. Padmakumar D.L. Sorkin A. Karapetian C.K. Vance (2003) J. Inorg. Biochem. 93 71–83 Occurrence Handle10.1016/S0162-0134(02)00621-9

    Article  Google Scholar 

  • A.J. Shaka P.B. Barker R. Freeman (1985) J. Magn. Reson. 64 547–552

    Google Scholar 

  • A.J. Shaka J. Keeler R. Freeman (1983) J. Magn. Reson. 53 313–340

    Google Scholar 

  • N.J. Skelton J. Kordel M. Akke S. Forsen W.J. Chazin (1994) Nat. Struct. Biol. 1 239–245 Occurrence Handle10.1038/nsb0494-239

    Article  Google Scholar 

  • D.L. Sorkin A.F. Miller (2000) J. Biomol. NMR 17 311–322 Occurrence Handle10.1023/A:1008344210662

    Article  Google Scholar 

  • J.R. Tolman J.M. Flanagan M.A. Kennedy J.H. Prestegard (1995) Proc. Natl. Acad. Sci. USA 92 9279–9283 Occurrence Handle1995PNAS...92.9279T

    ADS  Google Scholar 

  • S. Vathyam R.A. Byrd A.F. Miller (2000) Magn. Reson. Chem. 38 536–542 Occurrence Handle10.1002/1097-458X(200007)38:7<536::AID-MRC719>3.0.CO;2-8

    Article  Google Scholar 

  • A.J. Vila C.O. Fernández (1996) J. Am. Chem. Soc. 118 7291–7298 Occurrence Handle10.1021/ja9601346

    Article  Google Scholar 

  • H.J. Vogel T. Drakenberg S. Forsén J.D. O’Neil T. Hofmann (1985) Biochemistry 24 3870–3876 Occurrence Handle10.1021/bi00336a009

    Article  Google Scholar 

  • S.J. Wilkens B. Xia F. Weinhold J.L. Markley W.M. Westler (1998) J. Am. Chem. Soc. 120 4806–4814 Occurrence Handle10.1021/ja973489d

    Article  Google Scholar 

  • B. Xia J.D. Pikus K. McClay R.J. Steffan Y.K. Chae W.M. Westler J.L. Markley D.J. Fox (1999) Biochemistry 38 727–739

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Piccioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balayssac, S., Jiménez, B. & Piccioli, M. Assignment Strategy for Fast Relaxing Signals: Complete Aminoacid Identification in Thulium Substituted Calbindin D9K. J Biomol NMR 34, 63–73 (2006). https://doi.org/10.1007/s10858-005-5359-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-5359-z

Keywords

Navigation