Automated Protein NMR Structure Determination in Crude Cell-Extract

Abstract

A fully automated, NOE-based NMR structure determination of a uniformly 13C,15N-labeled protein was achieved in crude cell-extract, without purification of the overexpressed protein. Essentially complete sequence-specific assignments were obtained using triple resonance experiments, based on the high intensity of the resonances from the overexpressed protein relative to those of the background. For the collection of NOE distance constraints, efficient discrimination between NOE cross peaks from the target protein and background signals was achieved using the programs ATNOS and CANDID. In the iterative ATNOS/CANDID procedure, the identification of the desired protein NOEs is initially guided by the self-consistency of the protein NOE-network. Although the intensities of the signals in this network vary over a wide range, and are in many instances comparable to or smaller than those of the background, the first cycle of calculations resulted in the correct global polypeptide fold, and the structure was then refined in six subsequent cycles using the intermediate NMR structures for additional guidance. The experience gained with this work demonstrates that the ATNOS/CANDID procedure for automatic protein structure determination is highly robust and reliable in the presence of intense background signals, and might thus also represent a platform for future protein structure determinations in physiological fluids.

This is a preview of subscription content, log in to check access.

References

  1. F.C. Almeida G.C. Amorim V.H. Moreau V.O. Sousa A.T. Creazola T.A. Americo A.P. Pais A. Leite L.E. Netto R.J. Giordano A.P. Valente (2001) J. Magn. Reson. 148 142–146 Occurrence Handle10.1006/jmre.2000.2213 Occurrence Handle2001JMagR.148..142A

    Article  ADS  Google Scholar 

  2. C. Bartels T.H. Xia M. Billeter P. Güntert K. Wüthrich (1995) J. Biomol. NMR 6 1–10 Occurrence Handle10.1007/BF00417486

    Article  Google Scholar 

  3. W.D. Cornell P. Cieplak C.I. Bayly I.R. Gould K.M. Merz D.M. Ferguson D.C. Spellmeyer T. Fox J.W. Caldwell P.A. Kollman (1995) J. Am. Chem. Soc. 117 5179–5197 Occurrence Handle10.1021/ja00124a002

    Article  Google Scholar 

  4. T. Etezady-Esfarjani T. Herrmann W. Peti H.E. Klock S.A. Lesley K. Wüthrich (2004) J. Biomol. NMR 29 403–406

    Google Scholar 

  5. L.M. Galvao-Botton A.M. Katsuyama C.R. Guzzo F.C. Almeida C.S. Farah A.P. Valente (2003) FEBS Lett. 552 207–213

    Google Scholar 

  6. A.M. Gronenborn G.M. Clore (1996) Protein Sci. 5 174–177

    Google Scholar 

  7. P. Güntert V. Dötsch G. Wider K. Wüthrich (1992) J. Biomol. NMR 2 619–629 Occurrence Handle10.1007/BF02192850

    Article  Google Scholar 

  8. P. Güntert C. Mumenthaler K. Wüthrich (1997) J. Mol. Biol. 273 283–298 Occurrence Handle10.1006/jmbi.1997.1284

    Article  Google Scholar 

  9. T. Herrmann P. Güntert K. Wüthrich (2002a) J. Mol. Biol. 319 209–227 Occurrence Handle10.1016/S0022-2836(02)00241-3

    Article  Google Scholar 

  10. T. Herrmann P. Güntert K. Wüthrich (2002b) J. Biomol. NMR 24 171–189 Occurrence Handle10.1023/A:1021614115432

    Article  Google Scholar 

  11. J.A. Hubbard L.K. MacLachlan G.W. King J.J. Jones A.P. Fosberry (2003) Mol. Microbiol. 49 1191–1200 Occurrence Handle10.1046/j.1365-2958.2003.03628.x

    Article  Google Scholar 

  12. R. Koradi M. Billeter P. Güntert (2000) Comput. Phys. Commun. 124 139–147 Occurrence Handle2000CoPhC.124..139K

    ADS  Google Scholar 

  13. K.M. Lee E.J. Androphy J.D. Baleja (1995) J. Biomol. NMR 5 93–96

    Google Scholar 

  14. P. Luginbühl P. Güntert M. Billeter K. Wüthrich (1996) J. Biomol. NMR 8 136–146 Occurrence Handle10.1007/BF00211160

    Article  Google Scholar 

  15. P. Luginbühl T. Szyperski K. Wüthrich (1995) J. Magn. Reson. B 109 229–233

    Google Scholar 

  16. J. Marley M. Lu C. Bracken (2001) J. Biomol. NMR 20 71 Occurrence Handle10.1023/A:1011254402785

    Article  Google Scholar 

  17. D.R. Muhandiram N.A. Farrow G.Y. Xu S.H. Smallcombe L.E. Kay (1993) J. Magn. Reson. 102 317–321

    Google Scholar 

  18. M. Nilges (1997) Fold. Des. 2 S53–S57 Occurrence Handle10.1016/S1359-0278(97)00064-3

    Article  Google Scholar 

  19. C.J. Oldfield E.L. Ulrich Y. Cheng A.K. Dunker J.L. Markley (2005) Proteins 59 444–453 Occurrence Handle10.1002/prot.20446

    Article  Google Scholar 

  20. H.D. Ou H.C. Lai Z. Serber V. Dötsch (2001) J. Biomol. NMR 21 269–273 Occurrence Handle10.1023/A:1012920832184

    Article  Google Scholar 

  21. R. Page W. Peti I.A. Wilson R.C. Stevens K. Wüthrich (2005) Proc. Natl. Acad. Sci. USA 102 1901–1905 Occurrence Handle10.1073/pnas.0408490102 Occurrence Handle2005PNAS..102.1901P

    Article  ADS  Google Scholar 

  22. W. Peti T. Etezady-Esfarjani T. Herrmann H.E. Klock S.A. Lesley K. Wüthrich (2004) J. Struct. Funct. Genomics 5 205–215 Occurrence Handle10.1023/B:JSFG.0000029055.84242.9f

    Article  Google Scholar 

  23. M. Sattler J. Schleucher C. Griesinger (1999) Progr. Nucl. Magn. Reson. Spect. 34 93–158

    Google Scholar 

  24. Z. Serber V. Dötsch (2001) Biochemistry 40 14317–14323 Occurrence Handle10.1021/bi011751w

    Article  Google Scholar 

  25. S. Spera A. Bax (1991) J. Am. Chem. Soc. 113 5490–5492 Occurrence Handle10.1021/ja00014a071

    Article  Google Scholar 

  26. K. Wüthrich (1986) NMR of Proteins and Nucleic Acids Wiley New York

    Google Scholar 

  27. A. Yee X. Chang A. Pineda-Lucena B. Wu A. Semesi B. Le T. Ramelot G.M. Lee S. Bhattacharyya P. Gutierrez A. Denisov C.H. Lee J.R. Cort G. Kozlov J. Liao G. Finak L. Chen D. Wishart W. Lee L.P. McIntosh K. Gehring M.A. Kennedy A.M. Edwards C.H. Arrowsmith (2002) Proc. Natl. Acad. Sci. USA 99 1825–1830 Occurrence Handle2002PNAS...99.1825Y

    ADS  Google Scholar 

  28. E.R.P. Zuiderweg S.W. Fesik (1989) Biochemistry 28 2387–2391

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Touraj Etezady-Esfarjani.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Etezady-Esfarjani, T., Herrmann, T., Horst, R. et al. Automated Protein NMR Structure Determination in Crude Cell-Extract. J Biomol NMR 34, 3–11 (2006). https://doi.org/10.1007/s10858-005-4519-5

Download citation

Keywords

  • automated protein NMR structure determination with ATNOS and CANDID
  • network anchoring
  • structural proteomics
  • Thermotoga maritima