Skip to main content
Log in

Sensitivity enhancement in NMR of macromolecules by application of optimal control theory

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

NMR of macromolecules is limited by large transverse relaxation rates. In practice, this results in low efficiency of coherence transfer steps in multidimensional NMR experiments, leading to poor sensitivity and long acquisition times. The efficiency of coherence transfer can be maximized by design of relaxation optimized pulse sequences using tools from optimal control theory. In this paper, we demonstrate that this approach can be adopted for studies of large biological systems, such as the 800 kDa chaperone GroEL. For this system, the 1H–15N coherence transfer module presented here yields an average sensitivity enhancement of 20–25% for cross-correlated relaxation induced polarization transfer (CRIPT) experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CSA:

Chemical Shift Anisotropy

CRIPT:

Cross-Relaxation Induced Polarization Transfer

SQC:

Single Quantum Coherence

TROPIC:

Transverse Relaxation Optimized Polarization transfer Induced by Cross-correlation effects.

References

  • J.N. Abelson M.I. Simon (2001) NoChapterTitle T.L. James V. Doetsch U. Schmitz (Eds) Methods in Enzymology, Vol. 338. Nuclear Magnetic Resonance of Biological Macromolecules Academic Press San Diego

    Google Scholar 

  • A. Bax G. Cornilescu (2000) J. Am. Chem. Soc. 122 10143–10154 Occurrence Handle10.1021/ja0016194

    Article  Google Scholar 

  • G. Bodenhausen D.J. Ruben (1980) Chem. Phys. Lett. 69 185–189 Occurrence Handle10.1016/0009-2614(80)80041-8

    Article  Google Scholar 

  • J. Boyd U. Hommel V.V. Krishnan (1991) Chem. Phys. Lett. 187 317–324 Occurrence Handle10.1016/0009-2614(91)90432-9

    Article  Google Scholar 

  • R. Brüschweiler R.R. Ernst (1991) J. Chem. Phys. 96 1758–1766 Occurrence Handle10.1063/1.462131

    Article  Google Scholar 

  • R. Brüschweiler X. Liao P.E. Wright (1995) Science 268 886–889 Occurrence Handle7754375

    PubMed  Google Scholar 

  • B. Brutscher N.R. Skrynnikov T. Bremi R. Brüschweiler R.R. Ernst (1998) J. Magn. Reson. 130 346–351 Occurrence Handle10.1006/jmre.1997.1312 Occurrence Handle9500898

    Article  PubMed  Google Scholar 

  • J. Cavanagh W.J. Fairbrother A.G. Palmer N.J. Skelton (1996) Protein NMR Spectroscopy Principles and Practice Academic Press San Diego

    Google Scholar 

  • C. Dalvit (1992) J. Magn. Reson. 97 645–650

    Google Scholar 

  • A.E. Ferentz G. Wagner (2000) Q. Rev. Biophys. 33 29–65 Occurrence Handle10.1017/S0033583500003589 Occurrence Handle11075388

    Article  PubMed  Google Scholar 

  • M.W.F. Fischer L. Zeng Y. Pang W. Hu A. Majumdar E.R.P. Zuiderweg (1997) J. Am. Chem. Soc. 119 12629–12642 Occurrence Handle10.1021/ja972083y

    Article  Google Scholar 

  • D. Frueh (2002) Progr. NMR Spectrosc. 41 305–324 Occurrence Handle10.1016/S0079-6565(02)00051-1

    Article  Google Scholar 

  • M. Goldman (1984) J. Magn. Reson. 60 437–452

    Google Scholar 

  • S. Grzesiek A. Bax (1993) J. Am. Chem. Soc. 115 12593–12594 Occurrence Handle10.1021/ja00079a052

    Article  Google Scholar 

  • N. Khaneja J.S. Li C. Kehlet B. Luy S.J. Glaser (2004) Proc. Natl. Acad. Sci. USA 101 14742–14747 Occurrence Handle10.1073/pnas.0404820101 Occurrence Handle15466716

    Article  PubMed  Google Scholar 

  • N. Khaneja B. Luy S.J. Glaser (2003a) Proc. Natl. Acad. Sci. USA 100 13162–13166 Occurrence Handle10.1073/pnas.2134111100

    Article  Google Scholar 

  • N. Khaneja T. Reiss B. Luy S.J. Glaser (2003b) J. Magn. Reson. 162 311–319 Occurrence Handle10.1016/S1090-7807(03)00003-X

    Article  Google Scholar 

  • S.F. Lienin T. Bremi B. Brutscher R. Brüschweiler R.R. Ernst (1998) J. Am. Chem. Soc. 120 9870–9879 Occurrence Handle10.1021/ja9810179

    Article  Google Scholar 

  • K. Nishihara M. Kanemori H. Yanagi T. Yura (2000) Appl. Environ. Microbiol. 66 884–889 Occurrence Handle10.1128/AEM.66.3.884-889.2000 Occurrence Handle10698746

    Article  PubMed  Google Scholar 

  • K. Pervushin R. Riek G. Wider K. Wüthrich (1997) Proc. Natl. Acad. Sci. USA 94 12366–12371 Occurrence Handle10.1073/pnas.94.23.12366 Occurrence Handle9356455

    Article  PubMed  Google Scholar 

  • R. Riek J. Fiaux E.B. Bertelsen A.L. Horwich K. Wüthrich (2002) J. Am. Chem. Soc. 124 12144–12153 Occurrence Handle10.1021/ja026763z Occurrence Handle12371854

    Article  PubMed  Google Scholar 

  • R. Riek G. Wider K. Pervushin K. Wüthrich (1999) Proc. Natl. Acad. Sci. USA 96 4918–4923 Occurrence Handle10.1073/pnas.96.9.4918 Occurrence Handle10220394

    Article  PubMed  Google Scholar 

  • D.E. Woessner (1962) J. Chem. Phys. 37 647 Occurrence Handle10.1063/1.1701390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navin Khaneja.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frueh, D.P., Ito, T., Li, JS. et al. Sensitivity enhancement in NMR of macromolecules by application of optimal control theory. J Biomol NMR 32, 23–30 (2005). https://doi.org/10.1007/s10858-005-3592-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-3592-0

Key words:

Navigation