Skip to main content
Log in

Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of α-spectrin by MAS solid-state NMR

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Water molecules are a major determinant of protein stability and are important for understanding protein–protein interactions. We present two experiments which allow to measure first the effective T2 decay rate of individual amide proton, and second the magnetization build-up rates for a selective transfer from H2O to HN using spin diffusion as a mixing element. The experiments are demonstrated for a uniformly 2H, 15N labeled sample of a microcrystalline SH3 domain in which exchangeable deuterons were back-substituted with protons. In order to evaluate the NMR experimental data, as X-ray structure of the protein was determined using the same crystallization protocol as for the solid-state NMR sample. The NMR experimental data are correlated with the dipolar couplings calculated from H2O–HN distances which were extracted from the X-ray structure of the protein. We find that the HN T2 decay rates and H2O–HN build-up rates are sensitive to distance and dynamics of the detected water molecules with respect to the protein. We show that qualitative information about localization and dynamics of internal water molecules can be obtained in the solid-state by interpretation of the spin dynamics of a reporter amide proton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Bak J.T. Rasmussen N.C. Nielsen (2000) J. Magn. Reson. 147 296–330 Occurrence Handle10.1006/jmre.2000.2179 Occurrence Handle1:CAS:528:DC%2BD3cXotlKlurk%3D Occurrence Handle11097821

    Article  CAS  PubMed  Google Scholar 

  • A.E. Bennett C.M. Rienstra M. Auger K.V. Lakshmi R.G. Griffin (1995) J. Chem. Phys. 103 6951–6958 Occurrence Handle10.1063/1.470372 Occurrence Handle1:CAS:528:DyaK2MXovVeqtLs%3D

    Article  CAS  Google Scholar 

  • S. Cai S.Y. Stevens A.P. Budor E.R.P. Zuiderweg (2003) Biochemistry 42 11100–11108 Occurrence Handle1:CAS:528:DC%2BD3sXnt1Ohs7o%3D Occurrence Handle14503860

    CAS  PubMed  Google Scholar 

  • F. Castellani B.-J. Rossum Particlevan A. Diehl M. Schubert K. Rehbein H. Oschkinat (2002) Nature 420 98–102 Occurrence Handle1:CAS:528:DC%2BD38XosVCmurk%3D Occurrence Handle12422222

    CAS  PubMed  Google Scholar 

  • V. Chevelkov B.J.V. Rossum F. Castellani K. Rehbein A. Diehl M. Hohwy S. Steuernagel F. Engelke H. Oschkinat B. Reif (2003) J. Am. Chem. Soc. 125 7788–7789 Occurrence Handle1:CAS:528:DC%2BD3sXktlGqsro%3D Occurrence Handle12822982

    CAS  PubMed  Google Scholar 

  • G.M. Clore A. Bax P.T. Wingfield A.M. Gronenborn (1990) Biochemistry 29 5671–5676 Occurrence Handle1:CAS:528:DyaK3cXktVCgtbY%3D Occurrence Handle2383553

    CAS  PubMed  Google Scholar 

  • V.P. Denisov J. Peters H.D. Hörlein B. Halle (1996) Nat. Struct. Biol. 3 505–510 Occurrence Handle1:CAS:528:DyaK28Xjtlymu7s%3D Occurrence Handle8646535

    CAS  PubMed  Google Scholar 

  • G. Gemmecker W. Jahnke H. Kessler (1993) J. Am. Chem. Soc. 115 11620–11621 Occurrence Handle1:CAS:528:DyaK3sXms1CqsLs%3D

    CAS  Google Scholar 

  • M. Gottschalk N.A. Dencher B. Halle (2001) J. Mol. Biol. 311 605–621 Occurrence Handle1:CAS:528:DC%2BD3MXlslGitLc%3D Occurrence Handle11493013

    CAS  PubMed  Google Scholar 

  • B. Halle V.P. Denisov (2001) Meth. Enzymol. 338 178–201 Occurrence Handle1:CAS:528:DC%2BD3MXls1elt7w%3D Occurrence Handle11460548

    CAS  PubMed  Google Scholar 

  • G.S. Harbison J.E. Roberts J. Herzfeld R.G. Griffin (1988) J. Am. Chem. Soc. 110 7221–7223 Occurrence Handle1:CAS:528:DyaL1cXlsVGlsL4%3D

    CAS  Google Scholar 

  • W.J. Kabsch (1993) J. Appl. Cryst. 26 795–800 Occurrence Handle1:CAS:528:DyaK2cXptFeltw%3D%3D

    CAS  Google Scholar 

  • R. Koradi M. Billeter K. Wüthrich (1996) J. Mol. Graph. 14 51–55 Occurrence Handle1:CAS:528:DyaK28Xis12nsrc%3D Occurrence Handle8744573

    CAS  PubMed  Google Scholar 

  • A. Lesage A. Böckmann (2003) J. Am. Chem. Soc. 125 13336–13337 Occurrence Handle1:CAS:528:DC%2BD3sXnvFOisLw%3D Occurrence Handle14583011

    CAS  PubMed  Google Scholar 

  • A. Lesage L. Emsley (2001) J. Magn. Reson. 148 449–454 Occurrence Handle1:CAS:528:DC%2BD3MXhsFOgsLo%3D Occurrence Handle11237652

    CAS  PubMed  Google Scholar 

  • M.H. Levitt D.P. Raleigh F. Creuzet R.G. Griffin (1990) J. Chem. Phys. 92 6347–6364 Occurrence Handle1:CAS:528:DyaK3cXks12rt7g%3D

    CAS  Google Scholar 

  • A. McDermott T. Polenova A. Böckmann K.W. Zilm E.K. Paulsen R.W. Martin G.T. Montelione (2000) J. Biomol. NMR 16 209–219 Occurrence Handle1:CAS:528:DC%2BD3cXivFKrs7c%3D Occurrence Handle10805127

    CAS  PubMed  Google Scholar 

  • K. Murata K. Mitsuoka T. Hirai T. Walz P. Agre J.B. Heymann A. Engel Y. Fujiyoshi (2000) Nature 407 599–605 Occurrence Handle10.1038/35036519 Occurrence Handle1:CAS:528:DC%2BD3cXnsVKlsLg%3D Occurrence Handle11034202

    Article  CAS  PubMed  Google Scholar 

  • G.N. Murshudov A.A. Vagin E.J. Dodson (1997) Acta Cryst. D53 240–255 Occurrence Handle1:CAS:528:DyaK2sXjs1Gnsb4%3D

    CAS  Google Scholar 

  • A. Musacchio M.E.M. Noble R. Pauptit R.K. Wierenga M. Saraste (1992) Nature 359 851–855 Occurrence Handle1:CAS:528:DyaK38XmsVOgu7w%3D Occurrence Handle1279434

    CAS  PubMed  Google Scholar 

  • J. Navaza (1994) Acta Cryst. A50 157–163 Occurrence Handle1:CAS:528:DyaK2cXitlaksbk%3D

    CAS  Google Scholar 

  • F. Noack (1986) Prog. NMR Spect. 18 171–276 Occurrence Handle1:CAS:528:DyaL28XhvFynurk%3D

    CAS  Google Scholar 

  • F. Noack S. Becker J. Struppe (1997) Annu. Rep. NMR Spectrosc. 33 1 Occurrence Handle1:CAS:528:DyaK2sXktFahsLk%3D

    CAS  Google Scholar 

  • G. Otting (1997) Prog. Nucl. Magn. Reson. Spectrosc. 31 259–285 Occurrence Handle1:CAS:528:DyaK1cXnsFGntg%3D%3D

    CAS  Google Scholar 

  • G. Otting K. Wüthrich (1989) J. Am. Chem. Soc. 111 1871–1875 Occurrence Handle1:CAS:528:DyaL1MXhtFSgsLo%3D

    CAS  Google Scholar 

  • J. Pauli M. Baldus B.-J. Van Rossum H. De Groot H. Oschkinat (2001) Chem. BioChem. 2 272–281 Occurrence Handle1:CAS:528:DC%2BD3MXivVCntbY%3D

    CAS  Google Scholar 

  • J. Pauli B.-J. Van Rossum H. Förster H.J.M. De Groot H. Oschkinat (2000) J. Magn. Reson. 143 411–416 Occurrence Handle1:CAS:528:DC%2BD3cXhvVyjtr4%3D Occurrence Handle10729269

    CAS  PubMed  Google Scholar 

  • E.K. Paulson C.R. Morcombe V. Gaponenko B. Dancheck R.A. Byrd K.W. Zilm (2003) J. Am. Chem. Soc. 125 14222–14223 Occurrence Handle1:CAS:528:DC%2BD3sXos1Whsbw%3D Occurrence Handle14624539

    CAS  PubMed  Google Scholar 

  • E.K. Paulson C.R. Morcombe V. Gaponenko B. Dancheck R.A. Byrd K.W. Zilm (2003) J. Am. Chem. Soc. 125 15831–15836 Occurrence Handle1:CAS:528:DC%2BD3sXptlOmurg%3D Occurrence Handle14677974

    CAS  PubMed  Google Scholar 

  • B. Reif R.G. Griffin (2003) J. Magn. Reson. 160 78–83 Occurrence Handle1:CAS:528:DC%2BD3sXmslejsQ%3D%3D Occurrence Handle12565053

    CAS  PubMed  Google Scholar 

  • B. Reif C.P. Jaroniec C.M. Rienstra M. Hohwy R.G. Griffin (2001) J. Magn. Reson. 151 320–327 Occurrence Handle1:CAS:528:DC%2BD3MXmsVGisLg%3D Occurrence Handle11531354

    CAS  PubMed  Google Scholar 

  • B. Reif B.J. Rossum Particlevan F. Castellani K. Rehbein A. Diehl H. Oschkinat (2003) J. Am. Chem. Soc. 125 1488–1489 Occurrence Handle1:CAS:528:DC%2BD3sXksFektg%3D%3D Occurrence Handle12568603

    CAS  PubMed  Google Scholar 

  • C.M. Rienstra L. Tucker-Kellogg C.P. Jaroniec M. Hohwy B. Reif M.T. McMahon B. Tidor T. Lozano-Pérez R.G. Griffin (2002) Proc. Natl. Acad. Sci. USA 99 10260–10265 Occurrence Handle1:CAS:528:DC%2BD38Xmt1CitLY%3D Occurrence Handle12149447

    CAS  PubMed  Google Scholar 

  • M.K. Rosen K.H. Gardner R.C. Willis W.E. Parris T. Pawson L.E. Kay (1996) J. Mol. Biol. 263 627–636 Occurrence Handle1:CAS:528:DyaK28XntFyqs7c%3D Occurrence Handle8947563

    CAS  PubMed  Google Scholar 

  • S.M. Saparov P. Pohl (2004) Proc. Natl. Acad. Sci. USA 101 4805–4809 Occurrence Handle1:CAS:528:DC%2BD2cXjsFCjuro%3D Occurrence Handle15034178

    CAS  PubMed  Google Scholar 

  • B.-J. Rossum Particlevan F. Castellani J. Pauli K. Rehbein J. Hollander H.J.M. De Groot H. Oschkinat (2003) J. Biomol. NMR 25 217–223 Occurrence Handle12652133

    PubMed  Google Scholar 

  • M.C. Vega J.C. Martinez L. Serrano (2000) Prot. Sci. 9 2322–2328 Occurrence Handle1:CAS:528:DC%2BD3MXns1aksA%3D%3D

    CAS  Google Scholar 

  • E. Vinogradov P.K. Madhu S. Vega (1999) Chem. Phys. Lett. 314 443–450 Occurrence Handle1:CAS:528:DyaK1MXotVKrtr0%3D

    CAS  Google Scholar 

  • D. Voet J.G. Voet (1995) Biochemistry, 2nd edn John Wiley and Sons New York

    Google Scholar 

  • Y. Zhou J.H. Morais-Cabral A. Kaufman R. MacKinnon (2001) Nature 414 43–48 Occurrence Handle1:CAS:528:DC%2BD3MXot1Wqsbg%3D Occurrence Handle11689936

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Reif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevelkov, V., Faelber, K., Diehl, A. et al. Detection of dynamic water molecules in a microcrystalline sample of the SH3 domain of α-spectrin by MAS solid-state NMR. J Biomol NMR 31, 295–310 (2005). https://doi.org/10.1007/s10858-005-1718-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-1718-z

Keywords

Navigation