Skip to main content

Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications

Abstract

Statistical analysis reveals that the set of differences between the secondary shifts of the α- and β-carbons for residues i of a protein (Δδ13Cαi- Δδ13Cβi) provides the means to detect and correct referencing errors for 1H and 13C nuclei within a given dataset. In a correctly referenced protein dataset, linear regression plots of Δδ13Cαi,Δδ13Cβi, or Δδ1Hαi vs. (Δδ13Cαi- Δδ13Cβi) pass through the origin from two directions, the helix-to-coil and strand-to-coil directions. Thus, linear analysis of chemical shifts (LACS) can be used to detect referencing errors and to recalibrate the 1H and 13C chemical shift scales if needed. The analysis requires only that the signals be identified with distinct residue types (intra-residue spin systems). LACS allows errors in calibration to be detected and corrected in advance of sequence-specific assignments and secondary structure determinations. Signals that do not fit the linear model (outliers) deserve scrutiny since they could represent errors in identifying signals with a particular residue, or interesting features such as a cis-peptide bond. LACS provides the basis for the automated detection of such features and for testing reassignment hypotheses. Early detection and correction of errors in referencing and spin system identifications can improve the speed and accuracy of chemical shift assignments and secondary structure determinations. We have used LACS to create a database of offset-corrected chemical shifts corresponding to nearly 1800 BMRB entries: 300 with and 1500 without corresponding three-dimensional (3D) structures. This database can serve as a resource for future analysis of the effects of amino acid sequence and protein secondary and tertiary structure on NMR chemical shifts.

This is a preview of subscription content, access via your institution.

References

  • V. Barnett T. Lewis (1994) Outliers in Statistical Data Wiley & Sons Chichester New York

    Google Scholar 

  • N.J. Baxter M.P. Williamson (1997) J. Biomol. NMR 9 359–369 Occurrence Handle10.1023/A:1018334207887 Occurrence Handle9255942

    Article  PubMed  Google Scholar 

  • L. Blanchard C.N. Hunter M.P. Williamson (1997) J. Biomol. NMR 9 389–395 Occurrence Handle10.1023/A:1018394410613 Occurrence Handle9255943

    Article  PubMed  Google Scholar 

  • G. Cornilescu F. Delaglio A. Bax (1999) J. Biomol. NMR 13 289–302 Occurrence Handle10.1023/A:1008392405740 Occurrence Handle10212987

    Article  PubMed  Google Scholar 

  • C.W. Haigh R.B. Mallion (1979) Prog. Nucl. Mag. Res. Sp. 13 303 Occurrence Handle10.1016/0079-6565(79)80010-2

    Article  Google Scholar 

  • P.W. Holland R.E. Welsch (1977) Commun. Stat. Theor. Methods A6 813–827

    Google Scholar 

  • L.H. Hung R. Samudrala (2003) Protein Sci. 12 288–295 Occurrence Handle10.1110/ps.0222303 Occurrence Handle12538892

    Article  PubMed  Google Scholar 

  • M. Iwadate T. Asakura M.P. Williamson (1999) J. Biomol. NMR 13 199–211 Occurrence Handle10.1023/A:1008376710086 Occurrence Handle10212983

    Article  PubMed  Google Scholar 

  • W. Kabsch C. Sander (1983) Biopolymers 22 2577–2637 Occurrence Handle6667333

    PubMed  Google Scholar 

  • H. Le E. Oldfield (1994) J. Biomol. NMR 4 341–348 Occurrence Handle10.1007/BF00179345 Occurrence Handle8019141

    Article  PubMed  Google Scholar 

  • P.C. Mahalanobis (1936) Proc. Natl. Inst. Sci. 12 49–55

    Google Scholar 

  • J.L. Markley D.H. Meadows O. Jardetzky (1967) J. Mol. Biol. 27 25–35 Occurrence Handle10.1016/0022-2836(67)90349-X Occurrence Handle6033611

    Article  PubMed  Google Scholar 

  • H.N. Moseley G. Sahota G.T. Montelione (2004) J. Biomol. NMR 28 341–355 Occurrence Handle10.1023/B:JNMR.0000015420.44364.06 Occurrence Handle14872126

    Article  PubMed  Google Scholar 

  • S. Neal A.M. Nip H. Zhang D.S. Wishart (2003) J. Biomol. NMR 26 215–240 Occurrence Handle10.1023/A:1023812930288 Occurrence Handle12766419

    Article  PubMed  Google Scholar 

  • K. Osapay D.A. Case (1991) J. Am. Chem. Soc. 113 9436–9444 Occurrence Handle10.1021/ja00025a002

    Article  Google Scholar 

  • K. Osapay D.A. Case (1994) J. Biomol. NMR 4 215–230 Occurrence Handle8019135

    PubMed  Google Scholar 

  • M.D. Reiley V. Thanabal D.O. Omecinsky (1992) J. Am. Chem. Soc. 114 6251–6252 Occurrence Handle10.1021/ja00041a056

    Article  Google Scholar 

  • S. Schwarzinger G.J. Kroon T.R. Foss J. Chung P.E. Wright H.J. Dyson (2001) J. Am. Chem. Soc. 123 2970–2978 Occurrence Handle10.1021/ja003760i Occurrence Handle11457007

    Article  PubMed  Google Scholar 

  • B.R. Seavey E.A. Farr W.M. Westler J.L. Markley (1991) J. Biomol. NMR 1 217–236 Occurrence Handle10.1007/BF01875516 Occurrence Handle1841696

    Article  PubMed  Google Scholar 

  • S. Spera A. Bax (1991) J. Am. Chem. Soc. 113 5490–5492 Occurrence Handle10.1021/ja00014a071

    Article  Google Scholar 

  • H. Sternlicht D. Wilson (1967) Biochemistry 6 2881–2892 Occurrence Handle10.1021/bi00861a032 Occurrence Handle6055199

    Article  PubMed  Google Scholar 

  • Y. Wang O. Jardetzky (2002) Protein Sci. 11 852–861 Occurrence Handle10.1110/ps.3180102 Occurrence Handle11910028

    Article  PubMed  Google Scholar 

  • D.S. Wishart C.G. Bigam A. Holm R.S. Hodges B.D. Sykes (1995) J. Biomol. NMR 5 67–81 Occurrence Handle10.1007/BF00211764 Occurrence Handle7881273

    Article  PubMed  Google Scholar 

  • D.S. Wishart D.A. Case (2001) Methods Enzymol. 338 3–34 Occurrence Handle11460554

    PubMed  Google Scholar 

  • D.S. Wishart A.M. Nip (1998) Biochem. Cell Biol. 76 153–163 Occurrence Handle10.1139/bcb-76-2-3-153 Occurrence Handle9923684

    Article  PubMed  Google Scholar 

  • D.S. Wishart B.D. Sykes (1994) J. Biomol. NMR 4 171–180 Occurrence Handle10.1007/BF00175245 Occurrence Handle8019132

    Article  PubMed  Google Scholar 

  • D.S. Wishart B.D. Sykes F.M. Richards (1991) J. Mol. Biol. 222 311–333 Occurrence Handle10.1016/0022-2836(91)90214-Q Occurrence Handle1960729

    Article  PubMed  Google Scholar 

  • H. Zhang S. Neal D.S. Wishart (2003) J. Biomol. NMR 25 173–195 Occurrence Handle10.1023/A:1022836027055 Occurrence Handle12652131

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Eghbalnia.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, L., Eghbalnia, H., Bahrami, A. et al. Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications. J Biomol NMR 32, 13–22 (2005). https://doi.org/10.1007/s10858-005-1717-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-1717-0

Key words

  • carbon-13 chemical shifts
  • linear analysis of chemical shifts (LACS)
  • protein backbone geometry
  • proton chemical shifts
  • RefDB
  • TALOS