Skip to main content
Log in

Structure of calmodulin complexed with an olfactory CNG channelfragment and role of the central linker: Residual dipolar couplingsto evaluate calmodulin binding modes outside the kinase family

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • I. André T. Kesvatera B. Jonsson K.S. Akerfeldt S. Linse (2004) Biophys. J. 87 1929–1938

    Google Scholar 

  • M. Aoyagi A.S. Arvai J.A. Tainer E.D. Getzoff (2003) EMBO J. 22 766–75

    Google Scholar 

  • Y.S. Babu C.E. Bugg W.J. Cook (1988) J. Mol. Biol. 204 191–204

    Google Scholar 

  • G. Barbato M. Ikura L.E. Kay R.W. Pastor A. Bax (1992) Biochemistry 31 5269–5278

    Google Scholar 

  • A. Bax (2003) Protein Sci. 12 1–16

    Google Scholar 

  • A. Bax G. Kontaxis N. Tjandra (2001) Methods Enzymol. 339 127–174

    Google Scholar 

  • C.A. Bewley K.R. Gustafson M.R. Boyd D.G. Covell A. Bax G.M. Clore A.M. Gronenborn (1998) Nat. Struct. Biol. 5 571–578

    Google Scholar 

  • Brunger, A.T. (1992) Yale University Press, New Haven.

  • D.L. Bryce A. Bax (2004) J. Biomol. NMR. 28 273–87

    Google Scholar 

  • J.J. Chou S. Li C.B. Klee A. Bax (2001) Nat. Struct. Biol. 8 990–997

    Google Scholar 

  • G.M. Clore P.C. Driscoll P.T. Wingfield A.M. Gronenborn (1990a) Biochemistry 29 7387–7401

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990b) J. Am. Chem. Soc. 4989–4991

  • G.M. Clore A.M. Gronenborn (1998) Proc. Natl. Acad. Sci. USA 95 5891–5898

    Google Scholar 

  • G.M. Clore A.M. Gronenborn N. Tjandra (1998) J. Magn. Reson. 131 159–162

    Google Scholar 

  • G.M. Clore D.S. Garrett (1999) J. Am. Chem. Soc. 121 9008–9012

    Google Scholar 

  • G. Cornilescu J.L. Marquardt M. Ottiger A. Bax (1998) J. Am. Chem. Soc. 120 6836–6837

    Google Scholar 

  • F. Delaglio S. Grzesiek G.W. Vuister G. Zhu J. Pfeifer A. Bax (1995) J. Biomol. NMR 6 277–293

    Google Scholar 

  • N. Farrow D.R. Muhandiram A.U. Singer S.M. Pascal C.M. Kay G. Gish S.E. Shoelson T. Pawson J.D. Forman-Kay L.E. Kay (1994) Biochemistry 33 5984–600

    Google Scholar 

  • M.W. Fischer J.A. Losonczi J.L. Weaver J.H. Prestegard (1999) Biochemistry 38 9013–9022

    Google Scholar 

  • M.R. Hansen L. Mueller A. Pardi (1998) Nat. Struct. Biol. 5 1065–1074

    Google Scholar 

  • M. Ikura G.M. Clore A.M. Gronenborn G. Zhu C.B. Klee A. Bax (1992) Science 256 632–638

    Google Scholar 

  • M. Ikura A. Bax (1992) J. Am. Chem. Soc. 114 2433–2440

    Google Scholar 

  • B. Johnson R.A. Blevins (1994) J. Biomol. NMR 4 603–614

    Google Scholar 

  • L.E. Kay D.A. Torchia A. Bax (1989) Biochemistry 28 8972–8979

    Google Scholar 

  • H. Kurokawa M. Osawa H. Kurihara N. Katayama H. Tokumitsu M.B. Swindells M. Kainosho M. Ikura (2001) J. Mol. Biol. 312 59–68

    Google Scholar 

  • R.A. Laskowski J.A. Rullmannn M.W. MacArthur R. Kaptein J.M. Thornton (1996) J. Biomol. NMR 8 477–86

    Google Scholar 

  • W. Lee M.J. Revington C. Arrowsmith L.E. Kay (1994) FEBS Lett. 350 87–90

    Google Scholar 

  • G. Lipari A. Szabo (1982) J. Am. Chem. Soc. 104 4546–4559

    Google Scholar 

  • M. Liu T.-Y. Chen B. Ahamed J. Li K.-W. Yau (1994) Science 266 1348–1354

    Google Scholar 

  • J.A. Losonczi M. Andrec M.W. Fischer J.H. Prestegard (1999) J. Magn. Reson. 138 334–342

    Google Scholar 

  • T.K. Mal N.R. Skrynnikov K.L. Yap L.E. Kay M. Ikura (2002) Biochemistry 41 12899–12906

    Google Scholar 

  • W.E. Meador A.R. Means F.A. Quiocho (1992) Science 257 1251–1255

    Google Scholar 

  • W.E. Meador A.R. Means F.A. Quiocho (1993) Science 262 1718–1721

    Google Scholar 

  • R.S. Molday (1996) Curr. Opin. Neurobiol. 6 445–452

    Google Scholar 

  • V.Y. Orekhov D.E. Nolde A.P. Golovanov P.M. Korzhnev A.S. Arseniev (1995) Appl. Magn. Reson. 9 581–588

    Google Scholar 

  • M. Orsale S. Melino G.M. Contessa V. Torre G. Andreotti A. Motta M. Paci A. Desideri D.O. Cicero (2003) FEBS Lett. 548 11–16

    Google Scholar 

  • M. Osawa H. Tokumitsu M.B. Swindells H. Kurihara M. Orita T. Shibanuma T. Furuya M. Ikura (1999) Nat. Struct. Biol. 6 819–824

    Google Scholar 

  • M. Ottiger A. Bax (1999) J. Mol. Biol. 13 187–191

    Google Scholar 

  • M. Ottiger F. Delaglio A. Bax (1997) J. Magn. Reson. 131 373–378

    Google Scholar 

  • J.A. Putkey G.R. Slaughter A.R. Means (1985) J. Biol. Chem. 260 4704–4712

    Google Scholar 

  • A.R. Rhoads F. Friedberg (1997) FASEB J. 11 331–340

    Google Scholar 

  • N. Tjandra H. Kuboniwa H. Ren A. Bax (1995) Eur. J. Biochem. 230 1014–1024

    Google Scholar 

  • N. Tjandra J.G. Omichinski A.M. Gronenborn G.M. Clore A. Bax (1997) Nat. Struct. Biol. 4 728–732

    Google Scholar 

  • J.R. Tolman H.M. Al-Hashimi L.E. Kay J.H. Prestegard (2001) J. Am. Chem. Soc. 123 1416–1424

    Google Scholar 

  • M.D. Varnum W.N. Zagotta (1997) Science 278 110–113

    Google Scholar 

  • S.W. Vetter E. Leclerc (2003) Eur. J. Biochem. 270 404–414

    Google Scholar 

  • K.L. Yap J. Kim K. Truong M. Sherman T. Yuan M. Ikura (2000) J. Struct. Funct. Genomics. 1 8–14

    Google Scholar 

  • K.L. Yap T. Yuan T.K. Mal H.J. Vogel M. Ikura (2003) J. Mol. Biol. 328 193–204

    Google Scholar 

  • M. Zweckstetter A. Bax (2000) J. Am. Chem. Soc. 122 3791–3792

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alessandro Desideri or Daniel O. Cicero.

Electronic supplementary material

Electronic supplementary material

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Contessa, G.M., Orsale, M., Melino, S. et al. Structure of calmodulin complexed with an olfactory CNG channelfragment and role of the central linker: Residual dipolar couplingsto evaluate calmodulin binding modes outside the kinase family. J Biomol NMR 31, 185–199 (2005). https://doi.org/10.1007/s10858-005-0165-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-005-0165-1

Keywords

Navigation