A modified strategy for sequence specific assignment of protein NMR spectra based on amino acid type selective experiments

Abstract

The determination of the three-dimensional structure of a protein or the study of protein–ligand interactions requires the assignment of all relevant nuclei as an initial step. This is nowadays almost exclusively performed using triple-resonance experiments. The conventional strategy utilizes one or more pairs of three dimensional spectra to obtain redundant information and thus reliable assignments. Here, a modified strategy for obtaining sequence specific assignments based on two dimensional amino acid type selective triple-resonance experiments is proposed. These experiments can be recorded with good resolution in a relatively short time. They provide very specific and redundant information, in particular on sequential connectivities, that drastically increases the ease and reliability of the assignment procedure, done either manually or in an automated fashion. The new strategy is demonstrated with the protein domain PB1 from yeast CDC24p.

This is a preview of subscription content, access via your institution.

References

  1. G. Cornilescu A. Bax D.A. Case (2000) J Am. Chem. Soc. 122 2168–2171

    Google Scholar 

  2. G.M. Clore A.M. Gronenborn (1991) Prog NMR Spectrosc. 23 43–92

    Google Scholar 

  3. L. Emsley G. Bodenhausen (1990) Chem. Phys. Lett. 165 469–476

    Google Scholar 

  4. H. Geen R. Freeman (1991) J Magn. Reson. 93 93–141

    Google Scholar 

  5. S. Grzesiek A. Bax (1992a) J. Am. Chem. Soc. 114 6291–6293

    Google Scholar 

  6. S. Grzesiek A. Bax (1992b) J. Magn. Reson. B 99 201–207

    Google Scholar 

  7. S. Grzesiek J. Anglister A. Bax (1993) J. Magn. Reson. B 101 114–119

    Google Scholar 

  8. M. lkura L.E. Kay A. Bax (1991) J. Biomol. NMR 1 299–304

    Google Scholar 

  9. L.E. Kay M. lkura R. Tschudin A. Bax (1990) J. Magn. Reson. 89 496–514

    Google Scholar 

  10. L.E. Kay G.-Y. Xu A.U. Singer D.R. Muhandiram J.D. Forman-Kay (1993) J. Magn. Reson. B 101 333–337

    Google Scholar 

  11. D. Labudde D. Leitner P. Schmieder H. Oschkinat (2002) BRUKER-Rep. 150 8–11

    Google Scholar 

  12. T.M. Logan E.T. Olejniczak R.X. Xu S.W. Fesik (1992) FEBS Lett. 314 413–418

    Google Scholar 

  13. D. Marion M. lkura R. Tschudin A. Bax (1989) J. Magn. Reson. 85 393–399

    Google Scholar 

  14. G.T. Montelione G. Wagner (1990) J. Magn. Reson. 87 183–188

    Google Scholar 

  15. G.T. Montelione B.A. Lyons S.D. Emerson M. Tashiro (1992) J. Am. Chem. Soc. 114 10974–10975

    Google Scholar 

  16. H.N. Moseley G.T. Montelione (1999) Curr. Opin. Struct Biol. 9 635–642

    Google Scholar 

  17. Y. Noda M. Kohjima T. Izaki K. Ota S. Yoshinaga F. Inagaki T. Ito H. Sumimoto (2003) J Biol. Chem. 278 43516–43524

    Google Scholar 

  18. M. Pellecchia H. Iwai T. Szyperski K. Wüthrich (1997) J. Magn. Reson. 124 274–278

    Google Scholar 

  19. C.P. Ponting T. lto J. Moscat M.T. Diaz-Meco F. Inagaki H. Sumimoto (2002) Trends Biochem. Sci. 27 10

    Google Scholar 

  20. M. Sattler J. Schleucher C. Griesinger (1999) Prog. NMR Spectrosc. 34 93–158

    Google Scholar 

  21. P. Schmieder M. Leidert M.J.S. Kelly H. Oschkinat (1998) J. Magn. Reson. 131 199–201

    Google Scholar 

  22. M. Schubert L.J. Ball H. Oschkinat P. Schmieder (2000) J. Biomol. NMR 17 331–335

    Google Scholar 

  23. M. Schubert H. Oschkinat P. Schmieder (2001a) J. Magn. Reson. 148 61–72

    Google Scholar 

  24. M. Schubert H. Oschkinat P. Schmieder (2001b) J. Magn. Reson. 153 186–192

    Google Scholar 

  25. Schubert H. Oschkinat P. Schmieder (2001c) J. Biomol. NMR 20 379–384

    Google Scholar 

  26. M. Schubert M. Smalla P. Schmieder H. Oschkinat (1999) J. Magn. Reson. 141 34–43

    Google Scholar 

  27. B.R. Seavey E.A. Farr W.M. Westler J. Markley (1991) J. Biomol. NMR 1 217–236

    Google Scholar 

  28. A.J. Shaka P.B. Barker R. Freeman (1985) J. Magn. Reson. 64 547–552

    Google Scholar 

  29. A.J. Shaka J. Keeler T. Frenkiel R. Freeman (1983) J. Magn. Reson. 52 335–338

    Google Scholar 

  30. V. Sklenář M. Piotto R. Leppik V. Saudek (1993) J. Magn. Reson. A102 241–245

    Google Scholar 

  31. D. Staunton J. Owen l.D. Campbell (2003) Acc Chem. Res. 36 207–214

    Google Scholar 

  32. H. Terasawa Y. Noda T. lto H. Hatanaka S. lchikawa K. Ogura H. Sumimoto F. Inagaki (2001) EMBO J. 20 3947–3956

    Google Scholar 

  33. M.l. Wilson D.J. Gill O. Perisic M.T. Quinn R.L. Williams (2003) Mol. Cell 12 39–50

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Schmieder.

Additional information

Dedicated to Rüdiger Winter († 06.04.2004)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schubert, M., Labudde, D., Leitner, D. et al. A modified strategy for sequence specific assignment of protein NMR spectra based on amino acid type selective experiments. J Biomol NMR 31, 115–128 (2005). https://doi.org/10.1007/s10858-004-8263-z

Download citation

Keywords

  • amino acid type selective HSQC
  • backbone assignment
  • OPCA motif
  • PB1 domain
  • sequence specific assignment
  • triple-resonance experiments