Abstract
The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom–atom distance bounds, 3JNH α and 3Jαβ coupling constants, and 15N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom–atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0–1.5 ns while backbone 3JHNα-coupling constants and 1H– 15N order parameters take slightly longer, 1.0–2.0 ns. As expected, side-chain 3Jαβ-coupling constants and 1H– 15N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result.
Similar content being viewed by others
References
I. Antes W. Thiel W.F. Gunsteren Particlevan (2002) Eur. Biophys. J. 31 504–520
D. Bakowies W.F. Gunsteren Particlevan (2002) J. Mol. Biol. 315 713–736
H.J.C. Berendsen J.P.M. Postma W.F. Van Gunsteren A. Dinola J.R. Haak (1984) J. Chem. Phys. 81 3684–3690
Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F. and Hermans, J. (1981) In Intermolecular Forces, Pullman, B. (Ed.), Reidel, Dordrecht, pp. 331–342.
A.M. Bonvin M. Sunnerhagen G. Otting W.F. Gunsteren Particlevan (1998) J. Mol. Biol. 282 859–873
B.R. Brooks R.E. Bruccoleri B.D. Olafson D.J. States S. Swaminathan M. Karplus (1983) J. Comput. Chem. 4 187–217
M. Buck D.B. Boyd C. Redfield D.A. MacKenzie D.J. Jeenes D.B. Archer C.M. Dobson (1995) Biochemistry 34 4041–4055
Carter, D., He, J., Ruble, J.R. and Wright, B. (1997) Protein Data Bank, entry 1AKI.
I. Chandrasekhar W.F. Gunsteren Particlevan (2001) Curr. Sci. 81 1325–1327
I. Chandrasekhar W.F. Gunsteren Particlevan (2002) Eur. Biophys. J. 31 89–101
I. Chandrasekhar M.A. Kastenholz R.D. Lins C. Oostenbrink L.D. Schuler D.P. Tieleman W.F. Gunsteren Particlevan (2003) Eur. Biophys. J. 32 67–77
W. Czechtizky X. Daura A. Vasella W.F. Gunsteren Particlevan (2001) Helv. Chim. Acta 84 2132–2145
X. Daura K. Gademann B. Jaun D. Seebach W.F. van Gunsteren A.E. Mark (1999) Angew. Chem. Ind. Ed. 38 236–240
X. Daura A. Glättli P. Gee C. Peter W.F. Gunsteren Particlevan (2002) Adv. Protein Chem. 62 341–360
X. Daura A.E. Mark W.F. Gunsteren Particlevan (1998) J. Comput. Chem. 19 535–547
X. Daura W.F. Gunsteren Particlevan D. Rigo B. Jaun D. Seebach (1997) Chem.-Eur. J. 3 1410–1417
A. DeMarco M. Llinas K. Wüthrich (1978) Biopolymers >17 617–636
E. Egberts S.-J. Marrink H.J.C. Berendsen (1994) Eur. Biophys. J. 22 423–436
A. Glättli X. Daura W.F. Gunsteren Particlevan (2002) J. Chem. Phys. 116 9811–9828
J. Hermans H.J.C. Berendsen W.F. Gunsteren Particlevan J.P.M. Postma (1984) Biopolymers 23 1513–1518
Hünenberger, P.H. and van Gunsteren, W.F. (1997) In Computer Simulation of Biomolecular Systems, Theoretical and Experimental Applications, Vol. 3, van Gunsteren, W.F., Weiner, P.K. and Wilkinson, A.J. (Eds.), Kluwer Academic Publishers, Dordrecht, pp. 3–82.
P.H. Hünenberger A.E. Mark W.F. Gunsteren Particlevan (1995) J. Mol. Biol. 252 492–502
W.L. Jorgensen J. Tirado-Rives (1988) J. Am. Chem. Soc. 110 1657–1666
W. Kabsch C. Sander (1983) Biopolymers 22 2577–2637
M. Karplus (1959) J. Chem. Phys. 30 11–15
M. Karplus J.A. McCammon (2002) Nat. Struct. Biol. 9 646–652
M. Levitt (1983) J. Mol. Biol. 168 595–620
M. Levitt M. Hirshberg R. Sharon V. Daggett (1995) Comput. Phys. Commun 91 215–231
A.D. MacKerell SuffixJr. J. Wiorkiewiczkuczera M. Karplus (1995) J. Am. Chem. Soc. 117 11946–11975
J.L. Markley A. Bax Y. Arata C.W. Hilbers R. Kaptein B.D. Sykes P.E. Wright K. Wüthrich (1998) J. Biomol. NMR 12 1–23
F.A. Momany R. Rone (1992) J. Comput. Chem. 13 888–900
G. Nemethy K.D. Gibson K.A. Palmer C.N. Yoon G. Paterlini A. Zagari S. Rumsey H. A. Scheraga (1992) J. Phys. Chem. 96 6472–6484
B.C. Oostenbrink J.W. Pitera M.M.H. Lipzig ParticleVan J.H.N. Meerman W.F. Gunsteren Particlevan (2000) J. Med. Chem. 43 4594–4605
A. Pardi M. Billeter K. Wüthrich (1984) J. Mol. Biol. 180 741–751
D.A. Pearlman D.A. Case J.W. Caldwell W.S. Ross T.E. Cheatham SuffixIII S. DeBolt D. Ferguson G. Seibel P.A. Kollman (1995) Comput. Phys. Commun 91 1–41
J.-P. Ryckaert G. Ciccotti H.J.C. Berendsen (1977) J. Comput. Phys. 23 327–341
L.D. Schuler W.F. Gunsteren Particlevan (2000) Mol. Sim. 25 301–319
L.D. Schuler X. Daura W.F. Gunsteren Particlevan (2001) J. Comput. Chem. 22 1205–1218
H. Schwalbe S.B. Grimshaw A. Spencer M. Buck J. Boyd C.M. Dobson C. Redfield L. Smith (2001) Protein Sci. 10 677–688
W.R.P. Scott P.H. Hünenberger I.G. Tironi A.E. Mark S.R. Billeter J. Fennen A.E. Torda P. Huber P. Krüger W.F. Gunsteren Particlevan (1999) J. Phys. Chem. A 103 3596–3607
L.J. Smith C.M. Dobson W.F. Gunsteren Particlevan (1996) J. Mol. Biol. 286 1567–1580
L.J. Smith C.M. Dobson W.F. Gunsteren Particlevan (1999) Proteins 36 77–86
L.J. Smith A.E. Mark C.M. Dobson W.F. Gunsteren Particlevan (1995) Biochemistry 34 10918–10931
L.J. Smith M.J. Sutcliffe C. Redfield C.M. Dobson (1991) Biochemistry 30 986–996
L.J. Smith M.J. Sutcliffe C. Redfield C.M. Dobson (1993) J. Mol. Biol. 229 930–944
U. Stocker W.F. Gunsteren Particlevan (2000) Proteins 40 145–153
U. Stocker K. Spiegel W.F. Gunsteren Particlevan (2000) J. Biomol. NMR 18 1–12
J. Tropp (1980) J. Chem. Phys. 72 6035–6043
W.F. Gunsteren Particlevan H.J.C. Berendsen (1987) Groningen Molecular Simulation (GROMOS) Library Manual Biomos Groningen
W.F. Gunsteren Particlevan H.J.C. Berendsen (1990) Angew. Chem. Int. Ed. 29 992–1023
W.F. Gunsteren Particlevan A.E. Mark (1998) J. Chem. Phys. 108 6109–6116
W.F. Gunsteren Particlevan S.R. Billeter A.A. Eising P.H. Hünenberger P. Krüger A.E. Mark W.R.P. Scott I.G. Tironi (1996) Biomolecular Simulation: The GROMOS96 Manual and User Guide Vdf Hochschulverlag AG an der ETH Zürich Zürich
van Gunsteren, W.F., Bonvin, A.M.J.J., Daura, X. and Smith, L.J. (1999) In Structure, Computation and Dynamics in Protein NMR. Biol. Magnetic Resonance, Vol. 17, Krishna, K.N. and Berliner, L.J. (Eds.), Plenum Publishers, New York, pp. 3–35.
W.F. Gunsteren Particlevan R. Bürgi C. Peter X. Daura (2001) Angew. Chem. Int. Ed. 40 351–355
van Gunsteren, W.F., Daura, X. and Mark, A.E. (1998) In Encyclopedia of Computational Chemistry, Vol. 2, von Ragué Schleyer, P. (Ed.), John Wiley & Sons, New York, pp. 1211–1216.
P.K. Weiner P.A. Kollman (1981) J. Comput. Chem. 2 287–303
K. Wüthrich M. Billeter W. Braun (1983) J. Mol. Biol. 169 949–961
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Soares, T.A., Daura, X., Oostenbrink, C. et al. Validation of the GROMOS force-field parameter set 45A3 against nuclear magnetic resonance data of hen egg lysozyme. J Biomol NMR 30, 407–422 (2004). https://doi.org/10.1007/s10858-004-5430-1
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s10858-004-5430-1